因子分析数据_如何利用因子分析考核员工绩效?

1c4697359cb314a558c9e7fc3aea8c7b.png

在实际生活中,不同的变量之间有着各式各样的联系,如果想全面地研究一个问题,就需要搜集各方面的资料。但大量的数据就容易产生重复的信息,为了减少研究的复杂程度,这时候就可以用到主成分分析或因子分析

应用场景

因子分析可以看做是优化后的主成分分析,两种方法有很多共通的地方,并都可用于以下三种场景:信息浓缩、权重计算和综合竞争力研究

信息浓缩:将多个分析项浓缩成几个关键概括性指标。比如将多个问卷题浓缩成几个指标。如果偏重信息浓缩且关注指标与分析项对应关系,使用因子分析更为适合。

权重计算:利用方差解释率值计算各概括性指标的权重。在信息浓缩的基础上,可进一步计算每个主成分/因子的权重,构建指标权重体系。

综合竞争力:利用成分得分和方差解释率这两项指标,计算得到综合得分,用于综合竞争力对比(综合得分值越高意味着竞争力越强)。此类应用常见于经济、管理类研究,比如上市公司的竞争实力对比。

案例应用

(1)背景

本次抽取了150名员工的的绩效考核情况,共考察8项指标分别是工作效率、工作成果、创新能力、人际关系、合作意识、出勤情况、工作积极性、学习能力。希望通过分析,了解每个员工的绩效情况。

(2)操作步骤

本例中选用因子分析进行分析,放置如下:

1113f7734137435c90c1981d95bc42ab.png
使用路径:SPSSAU→进阶方法→因子

*也可使用主成分分析 使用路径:进阶方法→主成分

输出的因子个数可自己选择,也可默认由系统输出,系统默认以特征根大于1为判断标准。这里我们选择默认输出因子,同时勾选综合得分,后续的分析会用到。

(3)结果分析

① KMO 和 Bartlett 的检验结果

18270fa2d7f147cc8609b0342fc10ac7.png
表1 KMO和Bartlett 的检验

表1展示KMO检验和Bartlett 的检验结果,用于判断指标是否适合进行因子分析。通常KMO值的判断标准为0.6。大于0.6说明适合进行因子分析,反之,说明不适合进行分析。同时Bartlett检验对应P值小于0.05也说明适合进行因子分析。

根据上表可知,KMO为0.748,大于0.6,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验(P<0.05),说明研究数据适合进行因子分析。

② 方差解释率表格

dd531a8eb7328a958e5c15e4e23287b2.png
表2 方差解释率表格

表2展示的是各因子的方差解释率和累积解释率结果,用于描述提取的因子个数以及分析每个因子方差解释率和累积总共方差解释率,每个因子方差解释率进行加权即得到权重值。

从上表可知:本次共提取了3个因子。此3个因子的方差解释率分别是45.078%,19.527%,14.080%,累积方差解释率为78.685%。

另外,本次分析共提取出3个因子,它们对应的加权后方差解释率即权重依次为:45.078/78.685=57.29%;19.527/78.685=24.82%;14.080/78.685=17.89%。

*提示:如果因子提取个数与预期不符,可在分析时主动设置因子个数。

③因子载荷系数表格

50ddf33551ee7eddb4f35001f7ceff32.png
表3 因子载荷系数表格

表3通过载荷系数值,分析出每个因子与指标的对应关系情况。

由上表可知,所有指标对应的共同度值均高于0.4,意味着研究项和因子之间有着较强的关联性,因子可以有效的提取出信息。但因子与指标之间的对应关系。因而可考虑使用因子分析进一步分析,以便更好对因子命名。

可以看到此时的因子对应关系较好,因子1主要与工作效率、工作成果、创新能力有较强的关联性。因子2与人际关系、合作意识有较强的关联性。因子3与出勤情况、工作积极性有较强的关联性。因此可以将因子1命名为工作能力因子,因子2命名为团队能力因子,因子3命名为工作态度因子

④成份得分系数矩阵

6627645068458667ef800fb21f6bb851.png
表4 成份得分系数矩阵

表4用于展示各成分得分系数,如果进行权重计算,则需要使用“成份得分系数矩阵”建立因子和研究项之间的关系等式。

根据上表可得,各因子和研究项之间的关系等式分别为:

  • 因子1=0.320*工作积极性+0.296*工作成果+0.320*专业水平-0.071*工作效率-0.063*合作意识-0.119*工作创新度-0.046*工作趣味性+0.330*休假制度
  • 因子2=-0.074*工作积极性-0.138*工作成果+0.100*专业水平+0.548*工作效率+0.561*合作意识-0.107*工作创新度-0.023*工作趣味性-0.048*休假制度
  • 因子3=0.004*工作积极性+0.120*工作成果-0.203*专业水平-0.059*工作效率-0.091*合作意识+0.616*工作创新度+0.508*工作趣味性-0.098*休假制度

⑤碎石图

bfffe6f43a726c22df02c2aabaaca39f.png

碎石图用于辅助判断因子提取个数,当拆线由陡峭突然变得平稳时,陡峭到平稳对应的因子个数即为参考提取因子个数。碎石图仅辅助决策因子个数,实际研究中更多以专业知识,结合因子与研究项对应关系情况,综合权衡判断得出因子个数。

综合得分

还记不记得,开始分析前,我们勾选了综合得分。现在返回到分析界面,就可以看到一个新生成的标题,名为Comp_scoreXXXX,这个就是综合得分。

我们可以在SPSSAU分析页面右上角-上传数据中找到当前分析的数据进行查看。

175618ceeed5cddea1e5e6e5ab031a66.png
SPSSAU分析界面

c4666e870d10e9521886a50b1f0871ae.png
综合得分

经过整理排序后可得出最终排名情况,下图为本次绩效考评中得分排在前五位的员工:

1b65c8667b5905a1b6151a7ffe647eae.png

其他说明

(1)因子分析或主成分分析通常用于中间过程分析,后面往往使用其他方法进一步分析。此时可选择保存主成分得分,用于进一步分析,如回归分析、聚类分析等。

(2)​综合得分需要结合因子分别对应的方差解释率相乘,并最终加和,计算公式如下:综合得分=w1*因子1得分+w2*因子2得分+w3*因子3, w1,w2,w3分别表示三个因子的方差解释率。综合得分计算完成后,其分值越大,说明竞争力越强。

更多干货内容可登录SPSSAU官网查看

典型相关(CCA),如何快速分析多个变量的相关关系?

什么泊松分布?泊松回归又能做什么?

信度与效度有什么关系?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值