什么是高阶函数:一个函数可以作为参数传给另外一个函数(一个函数可以用来接收另一个函数作为参数),或者一个函数的返回值为另外一个函数(若返回值为该函数本身,则为递归),满足其一则为高阶函数。函数的形参位置必须接受一个函数对象。
代码理解高阶函数的含义:
1 '''函数当做参数被传递到另个函数是什么样的。把abs()函数赋值给了f变量,接下来就可以像使用abs()函数本身那样使用f变量了,区别只是换了个名字而已'''
2
3 f = abs #将求绝对值的abs函数赋值给f变量
4 f(-123) #f变量等同于abs函数的功能和性质,区别只是换了个别名
5 print(f(-123)) #输出结果 123
6 print(type(f)) # 查看下这个f变量的类型,显示为内置函数,因为它的真身就是内置abs()函数
7
8 '''这说明变量可以指向函数,既然变量可以指向函数,而我们知道函数的参数可以接收变量。也就是说一个函数可以接收另一个函数作为参数,一起来看看下面这个例子'''
9 defadd_(a, b, f_):10 return f_(a) + f_(b) #在本例中等同于 abs(a) + abs(b)
11
12 result = add_(-10, -20, abs) #这里把python内置函数abs作为参数传递给add_
13 print(result) #30
代码演示高阶函数两种场景:
1 #高阶函数之 ---》参数为函数
2 defbar():3 print("in the bar..")4 deffoo(func):5 func()6 print("in the foo..")7
8 foo(bar)9
10
11 #高阶函数之 ---》返回值为函数
12 defbar():13 print("in the bar..")14 deffoo(func):15 print("in the foo..")16 returnbar17 res=foo(bar)18 res()19
20 '''以上两个示例中,函数foo()为高阶函数。示例一中函数bar作为foo的参数传入;示例二中函数bar作为foo的返回值。
注意:函数名(例如bar 、foo)-->其为该函数的内存地址;函数名+括号(例如 bar()、foo() )-->调用该函数'''
python里的高阶函数有 filter、map、reduce、sorted、匿名函数lambda,递归函数等。
1). map函数
功能:map函数接收的是两个参数,接收一个函数 f 和一个或多个序列list,其功能是将序列中的值处理再依次返回至新列表内,其返回值为一个迭代器对象。
语法格式:map(function, iterable,[iterable1, ...iterablen]):
参数:(1).function: 函数对象 ;(2).iterable:序列(可迭代)对象 (字符串、列表、range...)
返回值:得到的这个map对象是一个迭代器对象,属于惰性序列的范畴。
代码演示map实现原理:
1 #需求:将lt = ['1','2','3','4','5'] 转换成 [1,2,3,4,5]
2
3 #代码实现一:使用传统技术来实现
4 lt = ['1','2','3','4','5','6']5 lt1 =[]6 for i inlt:7 num =int(i)8 lt1.append(num)9 print(lt1) #[1, 2, 3, 4, 5, 6] 由于列表属于非惰性序列范畴,即可以直接打印看效果
10
11
12 #代码实现二:使用新技术来实现
13 #思路步骤一:定义一个函数,功能:将str数据 --> int数据
14 importcollections15 lt = ['1','2','3','4','5','6']16 defchr2Int(chr):17 returnint(chr)18
19 mo = map(chr2Int,lt) #这里的chr2Int后面不能加(),也不能传参*****
20 print(map,type(mo)) #
21 print(isinstance(mo,collections.Iterator)) #True,验证是否是迭代器对象,True才能使用next
22 print(next(mo)) #1
23 print(list(mo)) #[2, 3, 4, 5, 6] 将map对象(惰性的)转换为list对象(非惰性的)
24
25
26 #代码实现三:终极操作
27 print(list(map(chr2Int,lt))) #[1, 2, 3, 4, 5, 6]
28 print(list(map(int,lt)) #[1, 2, 3, 4, 5, 6]
29
30 '''map(int,lt):执行过程如下:31 1).lt --> 取出第一个元素:'1'当做实际参数传递给int函数的形参位置 --> int('1'),将转换以后的结果:1保留到map对象的第一个元素位置32 2).lt --> 取出第二个元素:'2'当做实际参数传递给int函数的形参位置 --> int('2'),将转换以后的结果:2保留到map对象的第二个元素位置33 以此类推...34 直到map函数执行完了,整个map对象才真正成型了...'''
代码演示示例:
1 #实例1: lt = [1,2,3,4,5] --> 得到:['1','2','3','4','5']
2
3 lt = [1,2,3,4,5]4
5 #自定义函数:从int --》 str
6 defint2Str(i):7 returnstr(i)8
9 print(list(map(int2Str,lt))) #['1', '2', '3', '4', '5']
10 print(list(map(str,lt))) #['1', '2', '3', '4', '5']
11 print(list(map(lambda x: str(x),lt))) #['1', '2', '3', '4', '5']
12
13
14 #实例2:lt = [1,2,3,4,5] --> 得到:[1,4,9,16,25]
15
16 lt = [1,2,3,4,5]17
18 #自定义函数:目标实现开方操作
19 defkaifang(num):20 return num ** 2
21
22 print(list(map(kaifang,lt))) #[1, 4, 9, 16, 25]
23 print(list(map(lambda x: x ** 2,lt))) #[1, 4, 9, 16, 25],map结合匿名函数使用,用的比较多
2).reduce函数
功能:reduce函数也是一个参数为函数,一个为可迭代(序列)对象的高阶函数,但reduce()传入的函数必须接收两个参数,reduce()对list的每个元素反复调用函数function。所以reduce()函数接收的参数和 map()类似,但是行为不同。reduce() 函数会对参数序列中元素进行累积,其返回值为一个值而不是迭代器对象,故其常用与叠加、叠乘等。
语法格式:reduce(function, iterable[, iterable1,...,iterablen] [, initializer])
参数:function -- 函数,有两个参数。iterable -- 可迭代对象。initializer -- 可选,初始参数
返回值:为一个值,而不是迭代器对象
【注意】:reduce函数属于functools模块中的函数,所以需要显示的先导入functools模块再使用from functools import reduce
代码演示reduce实现原理:
1 from functools importreduce2
3 '''当调用reduce(f,[1,3,5,7,9])时,reduce函数将做如下计算:由于f这个函数的功能是计算两个元素的值,所以先计算头两个元素:f(1,3),4 结果为4;再把结果和第3个元素计算:f(4,5),结果为9;再把结果和第4个元素计算:f(9,7),结果为16;5 再把结果和第5个元素计算:f(16,9),结果为25;由于没有更多的元素了,计算结束,返回结果25。'''
6 deff(x, y):7 return x +y8
9 result = reduce(f, [1, 3, 5, 7, 9])10 print(result) #25
11
12
13 '''reduce()**还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,如计算:结果将变为125,
因为第一轮计算是:计算初始值和第一个元素:f(100, 1),结果为101。'''
14 reduce(f, [1, 3, 5, 7, 9], 100)15
16
17 #使用 lambda 匿名函数
18 reduce(lambda x, y: x+y, [1,3,5,7,9])
1 '''reduce函数执行顺序:先将lsd中的第一和第二个元素传入到fn中参与运算,运算后得到结果,再和第三个元素传入到fn中参与运算,以此类推...'''
2
3 #需求:得到元祖tp = (1,2,3,4)中元素的和值
4
5 '''首先自定义函数 --> add作用:对列表中的元素进行求和操作 def add(x,y)6 然后使用reduce函数执行过程如下:7 第一次:add(1,2)8 第二次:add(add(1,2),3)9 第三次:add(add(add(1,2),3),4)'''
10
11 #代码实现一:递归的思想来实现
12 tp = (1,2,3,4)13 defmySum(num):14 if num == 1:15 return 1
16 return num + mySum(num - 1)17
18 print(mySum(4))19
20
21 #代码实现二:reduce函数实现
22 from functools importreduce23 defadd(x,y):24 return x +y25
26 res =reduce(add,tp)27
28 print(res,type(res)) #10
29 print(reduce(lambda x,y: x +y,tp)) # 1030 print(sum(tp)) # 10直接使用内置函数sum()了
代码演示示例:
1 #实例1:lt = [1,2,3,4] 得到其中元素的乘积
2
3 lt = [1,2,3,4]4 print(reduce(lambda x,y: x *y,lt))5
6 #实例2:从键盘读入一个整数字符串数据,例如:'12345',将其转换为12345;
7 '''注意:不能直接使用int()来实现.思路:使用map和reduce配合来实现8 步骤一:'12345' --》拆分为散装数据:1 2 3 4 5 可以使用map来实现9 步骤二:将map对象中的数据 1 2 3 4 5 组合成为 --> 12345 可以使用reduce来实现10 '''
11 from functools importreduce12
13 str1 = '12345'
14 defchr2Int(str):15 returnint(str)16
17 defzuhe(x,y):18 return x * 10 +y19
20 mo =map(chr2Int,str1)21 num =reduce(zuhe,mo)22 print(num,type(num)) #12345
23
24
25 #终极版:
26 print(reduce(lambda x,y: x * 10 + y,map(int,str1))) #12345
3).filter函数
功能:filter()函数也是接收两个参数,接收一个函数和一个序列的高阶函数,其主要功能是过滤,过滤掉不符合条件的元素,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新序列中。filter的意思:在计算机领域中我们都称为过滤器。
语法格式:filter(function, iterable)
参数:和map、reduce一样理解,function:判断函数,iterable :可迭代对象。
返回值:一个惰性序列对象(filter对象,迭代器对象),例如列表
代码演示示例:
1 #示例1:lt = [1,2,3,4,5,6,7,8] --> 得到:[2,4,6,8]
2
3 lt = [1,2,3,4,5,6,7,8]4 #代码实现一:老技术
5 lt1 =[]6 for i inlt:7 if i % 2 ==0:8 lt1.append(i)9
10 print(lt1)11
12
13 #代码实现二:新技术(filter)
14 deffunc(o):15 if o % 2 ==0:16 returnTrue17 returnFalse18
19 fo =filter(func,lt)20
21 print(fo,type(fo)) #
22 print(list(filter(func,lt))) #[2, 4, 6, 8]
23 print(isinstance(fo,collections.Iterator)) #Ture
24 print(isinstance(fo,collections.Iterable)) #Ture
25 print(next(fo)) #2
26 print(next(fo)) #4
27 print(list(fo)) #[6, 8]
28
29
30 #终极版:
31 print(list(filter(lambda x:x % 2 == 0,lt))) #[2, 4, 6, 8]
32
33
34 #示例2:lt = [345,0,'abcde',1.2,0,3.14,0.0,'haha','hehe',True,False,[],(),{},{1,2,3},[10,20,30],{'name':'zs','age':30},None]
35 得到如下效果:lt = [345,'abcde',1.2,3.14,'haha','hehe',True,{1,2,3},[10,20,30],{'name':'zs','age':30}]36
37 lt = [345,0,'abcde',1.2,0,3.14,0.0,'haha','hehe',True,False,[]38 ,(),{},{1,2,3},[10,20,30],{'name':'zs','age':30},None]39
40 print(list(filter(lambdax: bool(x),lt)))41 #或者
42 print(list(filter(bool,lt)))43
44
45 #示例3:lt1 = ['aaaaaaaa','bbbbb','cccccc','ddd']得到如下效果:['aaaaaaaa','cccccc']
46
47 lt1 = ['aaaaaaaa','bbbbb','cccccc','ddd']48
49 print(list(filter(lambda x: len(x) > 5,lt1)))
高阶函数以及匿名函数之间的配合使用(练习):
1 '''模板一:lambda和filter的配合使用'''
2 #需求:lt = [1,2,3,4,5,6,7,8,9] --> 得到[3,6,9]
3
4 print(list(filter(lambda x: x % 3 ==0,lt)))5
6
7 '''模板二:lambda 和map的配合使用'''
8 #需求:演示开平方操作 --> 容器对象:range
9
10 mo = map(lambda x: x ** 2,range(5))11 print(list(mo))12
13
14 '''模板三:在模板二的基础上进行功能扩展:range(10),过滤以后保留的数据范围大小为:(5,50)之间'''
15
16 mo = map(lambda x: x ** 2,range(10))17 fo = filter(lambda x: x > 5 and x < 50,mo)18 print(list(fo))19
20
21 '''模板四:lambda 和reduce配合使用'''
22 #求和值
23 importfunctools24
25 lt = [1,2,3,4,5]26
27 my_sum = functools.reduce(lambda x,y: x +y,lt)28 print(my_sum)29
30
31 '''模板五:求两个列表对象中元素的和,返回新列表:32 lt1 = [1,2,3,4], lt2 = [5,6,7,8], 结果:lt3 = [6,8,10,12]'''
33
34 mo = map(lambda x,y: x +y,lt1,lt2)35 print(list(mo))36
37
38 '''模板六:求字符串中每个单词的长度content = "welcome to shanghai", 结果:[7,2,8]'''
40 #使用切割的思想:切完之后得到一个列表对象,内部元素["welcome","to","shanghai"]
41 words_list =content.split()42 mo =map(len,words_list)43 print(list(mo))