python使用高阶函数实现_18.python高阶函数

本文介绍了Python中的高阶函数,包括函数作为参数、返回值的情况,并通过示例详细解析了map、reduce和filter函数的工作原理及使用。通过案例展示了如何利用这些高阶函数进行数据处理和操作,如转换、过滤和累积计算。
摘要由CSDN通过智能技术生成

什么是高阶函数:一个函数可以作为参数传给另外一个函数(一个函数可以用来接收另一个函数作为参数),或者一个函数的返回值为另外一个函数(若返回值为该函数本身,则为递归),满足其一则为高阶函数。函数的形参位置必须接受一个函数对象。

代码理解高阶函数的含义:

1 '''函数当做参数被传递到另个函数是什么样的。把abs()函数赋值给了f变量,接下来就可以像使用abs()函数本身那样使用f变量了,区别只是换了个名字而已'''

2

3 f = abs #将求绝对值的abs函数赋值给f变量

4 f(-123) #f变量等同于abs函数的功能和性质,区别只是换了个别名

5 print(f(-123)) #输出结果 123

6 print(type(f)) # 查看下这个f变量的类型,显示为内置函数,因为它的真身就是内置abs()函数

7

8 '''这说明变量可以指向函数,既然变量可以指向函数,而我们知道函数的参数可以接收变量。也就是说一个函数可以接收另一个函数作为参数,一起来看看下面这个例子'''

9 defadd_(a, b, f_):10 return f_(a) + f_(b) #在本例中等同于 abs(a) + abs(b)

11

12 result = add_(-10, -20, abs) #这里把python内置函数abs作为参数传递给add_

13 print(result) #30

代码演示高阶函数两种场景:

1 #高阶函数之 ---》参数为函数

2 defbar():3 print("in the bar..")4 deffoo(func):5 func()6 print("in the foo..")7

8 foo(bar)9

10

11 #高阶函数之 ---》返回值为函数

12 defbar():13 print("in the bar..")14 deffoo(func):15 print("in the foo..")16 returnbar17 res=foo(bar)18 res()19

20 '''以上两个示例中,函数foo()为高阶函数。示例一中函数bar作为foo的参数传入;示例二中函数bar作为foo的返回值。

注意:函数名(例如bar 、foo)-->其为该函数的内存地址;函数名+括号(例如 bar()、foo() )-->调用该函数'''

python里的高阶函数有 filter、map、reduce、sorted、匿名函数lambda,递归函数等。

1). map函数

功能:map函数接收的是两个参数,接收一个函数 f 和一个或多个序列list,其功能是将序列中的值处理再依次返回至新列表内,其返回值为一个迭代器对象。

语法格式:map(function, iterable,[iterable1, ...iterablen]):

参数:(1).function: 函数对象 ;(2).iterable:序列(可迭代)对象 (字符串、列表、range...)

返回值:得到的这个map对象是一个迭代器对象,属于惰性序列的范畴。

代码演示map实现原理:

1 #需求:将lt = ['1','2','3','4','5'] 转换成 [1,2,3,4,5]

2

3 #代码实现一:使用传统技术来实现

4 lt = ['1','2','3','4','5','6']5 lt1 =[]6 for i inlt:7 num =int(i)8 lt1.append(num)9 print(lt1) #[1, 2, 3, 4, 5, 6] 由于列表属于非惰性序列范畴,即可以直接打印看效果

10

11

12 #代码实现二:使用新技术来实现

13 #思路步骤一:定义一个函数,功能:将str数据 --> int数据

14 importcollections15 lt = ['1','2','3','4','5','6']16 defchr2Int(chr):17 returnint(chr)18

19 mo = map(chr2Int,lt) #这里的chr2Int后面不能加(),也不能传参*****

20 print(map,type(mo)) #

21 print(isinstance(mo,collections.Iterator)) #True,验证是否是迭代器对象,True才能使用next

22 print(next(mo)) #1

23 print(list(mo)) #[2, 3, 4, 5, 6] 将map对象(惰性的)转换为list对象(非惰性的)

24

25

26 #代码实现三:终极操作

27 print(list(map(chr2Int,lt))) #[1, 2, 3, 4, 5, 6]

28 print(list(map(int,lt)) #[1, 2, 3, 4, 5, 6]

29

30 '''map(int,lt):执行过程如下:31 1).lt --> 取出第一个元素:'1'当做实际参数传递给int函数的形参位置 --> int('1'),将转换以后的结果:1保留到map对象的第一个元素位置32 2).lt --> 取出第二个元素:'2'当做实际参数传递给int函数的形参位置 --> int('2'),将转换以后的结果:2保留到map对象的第二个元素位置33 以此类推...34 直到map函数执行完了,整个map对象才真正成型了...'''

代码演示示例:

1 #实例1: lt = [1,2,3,4,5] --> 得到:['1','2','3','4','5']

2

3 lt = [1,2,3,4,5]4

5 #自定义函数:从int --》 str

6 defint2Str(i):7 returnstr(i)8

9 print(list(map(int2Str,lt))) #['1', '2', '3', '4', '5']

10 print(list(map(str,lt))) #['1', '2', '3', '4', '5']

11 print(list(map(lambda x: str(x),lt))) #['1', '2', '3', '4', '5']

12

13

14 #实例2:lt = [1,2,3,4,5] --> 得到:[1,4,9,16,25]

15

16 lt = [1,2,3,4,5]17

18 #自定义函数:目标实现开方操作

19 defkaifang(num):20 return num ** 2

21

22 print(list(map(kaifang,lt))) #[1, 4, 9, 16, 25]

23 print(list(map(lambda x: x ** 2,lt))) #[1, 4, 9, 16, 25],map结合匿名函数使用,用的比较多

2).reduce函数

功能:reduce函数也是一个参数为函数,一个为可迭代(序列)对象的高阶函数,但reduce()传入的函数必须接收两个参数,reduce()对list的每个元素反复调用函数function。所以reduce()函数接收的参数和 map()类似,但是行为不同。reduce() 函数会对参数序列中元素进行累积,其返回值为一个值而不是迭代器对象,故其常用与叠加、叠乘等。

语法格式:reduce(function, iterable[, iterable1,...,iterablen] [, initializer])

参数:function -- 函数,有两个参数。iterable -- 可迭代对象。initializer -- 可选,初始参数

返回值:为一个值,而不是迭代器对象

【注意】:reduce函数属于functools模块中的函数,所以需要显示的先导入functools模块再使用from functools import reduce

代码演示reduce实现原理:

1 from functools importreduce2

3 '''当调用reduce(f,[1,3,5,7,9])时,reduce函数将做如下计算:由于f这个函数的功能是计算两个元素的值,所以先计算头两个元素:f(1,3),4 结果为4;再把结果和第3个元素计算:f(4,5),结果为9;再把结果和第4个元素计算:f(9,7),结果为16;5 再把结果和第5个元素计算:f(16,9),结果为25;由于没有更多的元素了,计算结束,返回结果25。'''

6 deff(x, y):7 return x +y8

9 result = reduce(f, [1, 3, 5, 7, 9])10 print(result) #25

11

12

13 '''reduce()**还可以接收第3个可选参数,作为计算的初始值。如果把初始值设为100,如计算:结果将变为125,

因为第一轮计算是:计算初始值和第一个元素:f(100, 1),结果为101。'''

14 reduce(f, [1, 3, 5, 7, 9], 100)15

16

17 #使用 lambda 匿名函数

18 reduce(lambda x, y: x+y, [1,3,5,7,9])

1 '''reduce函数执行顺序:先将lsd中的第一和第二个元素传入到fn中参与运算,运算后得到结果,再和第三个元素传入到fn中参与运算,以此类推...'''

2

3 #需求:得到元祖tp = (1,2,3,4)中元素的和值

4

5 '''首先自定义函数 --> add作用:对列表中的元素进行求和操作 def add(x,y)6 然后使用reduce函数执行过程如下:7 第一次:add(1,2)8 第二次:add(add(1,2),3)9 第三次:add(add(add(1,2),3),4)'''

10

11 #代码实现一:递归的思想来实现

12 tp = (1,2,3,4)13 defmySum(num):14 if num == 1:15 return 1

16 return num + mySum(num - 1)17

18 print(mySum(4))19

20

21 #代码实现二:reduce函数实现

22 from functools importreduce23 defadd(x,y):24 return x +y25

26 res =reduce(add,tp)27

28 print(res,type(res)) #10

29 print(reduce(lambda x,y: x +y,tp)) # 1030 print(sum(tp)) # 10直接使用内置函数sum()了

代码演示示例:

1 #实例1:lt = [1,2,3,4] 得到其中元素的乘积

2

3 lt = [1,2,3,4]4 print(reduce(lambda x,y: x *y,lt))5

6 #实例2:从键盘读入一个整数字符串数据,例如:'12345',将其转换为12345;

7 '''注意:不能直接使用int()来实现.思路:使用map和reduce配合来实现8 步骤一:'12345' --》拆分为散装数据:1 2 3 4 5 可以使用map来实现9 步骤二:将map对象中的数据 1 2 3 4 5 组合成为 --> 12345 可以使用reduce来实现10 '''

11 from functools importreduce12

13 str1 = '12345'

14 defchr2Int(str):15 returnint(str)16

17 defzuhe(x,y):18 return x * 10 +y19

20 mo =map(chr2Int,str1)21 num =reduce(zuhe,mo)22 print(num,type(num)) #12345

23

24

25 #终极版:

26 print(reduce(lambda x,y: x * 10 + y,map(int,str1))) #12345

3).filter函数

功能:filter()函数也是接收两个参数,接收一个函数和一个序列的高阶函数,其主要功能是过滤,过滤掉不符合条件的元素,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新序列中。filter的意思:在计算机领域中我们都称为过滤器。

语法格式:filter(function, iterable)

参数:和map、reduce一样理解,function:判断函数,iterable :可迭代对象。

返回值:一个惰性序列对象(filter对象,迭代器对象),例如列表

代码演示示例:

1 #示例1:lt = [1,2,3,4,5,6,7,8] --> 得到:[2,4,6,8]

2

3 lt = [1,2,3,4,5,6,7,8]4 #代码实现一:老技术

5 lt1 =[]6 for i inlt:7 if i % 2 ==0:8 lt1.append(i)9

10 print(lt1)11

12

13 #代码实现二:新技术(filter)

14 deffunc(o):15 if o % 2 ==0:16 returnTrue17 returnFalse18

19 fo =filter(func,lt)20

21 print(fo,type(fo)) #

22 print(list(filter(func,lt))) #[2, 4, 6, 8]

23 print(isinstance(fo,collections.Iterator)) #Ture

24 print(isinstance(fo,collections.Iterable)) #Ture

25 print(next(fo)) #2

26 print(next(fo)) #4

27 print(list(fo)) #[6, 8]

28

29

30 #终极版:

31 print(list(filter(lambda x:x % 2 == 0,lt))) #[2, 4, 6, 8]

32

33

34 #示例2:lt = [345,0,'abcde',1.2,0,3.14,0.0,'haha','hehe',True,False,[],(),{},{1,2,3},[10,20,30],{'name':'zs','age':30},None]

35 得到如下效果:lt = [345,'abcde',1.2,3.14,'haha','hehe',True,{1,2,3},[10,20,30],{'name':'zs','age':30}]36

37 lt = [345,0,'abcde',1.2,0,3.14,0.0,'haha','hehe',True,False,[]38 ,(),{},{1,2,3},[10,20,30],{'name':'zs','age':30},None]39

40 print(list(filter(lambdax: bool(x),lt)))41 #或者

42 print(list(filter(bool,lt)))43

44

45 #示例3:lt1 = ['aaaaaaaa','bbbbb','cccccc','ddd']得到如下效果:['aaaaaaaa','cccccc']

46

47 lt1 = ['aaaaaaaa','bbbbb','cccccc','ddd']48

49 print(list(filter(lambda x: len(x) > 5,lt1)))

高阶函数以及匿名函数之间的配合使用(练习):

1 '''模板一:lambda和filter的配合使用'''

2 #需求:lt = [1,2,3,4,5,6,7,8,9] --> 得到[3,6,9]

3

4 print(list(filter(lambda x: x % 3 ==0,lt)))5

6

7 '''模板二:lambda 和map的配合使用'''

8 #需求:演示开平方操作 --> 容器对象:range

9

10 mo = map(lambda x: x ** 2,range(5))11 print(list(mo))12

13

14 '''模板三:在模板二的基础上进行功能扩展:range(10),过滤以后保留的数据范围大小为:(5,50)之间'''

15

16 mo = map(lambda x: x ** 2,range(10))17 fo = filter(lambda x: x > 5 and x < 50,mo)18 print(list(fo))19

20

21 '''模板四:lambda 和reduce配合使用'''

22 #求和值

23 importfunctools24

25 lt = [1,2,3,4,5]26

27 my_sum = functools.reduce(lambda x,y: x +y,lt)28 print(my_sum)29

30

31 '''模板五:求两个列表对象中元素的和,返回新列表:32 lt1 = [1,2,3,4], lt2 = [5,6,7,8], 结果:lt3 = [6,8,10,12]'''

33

34 mo = map(lambda x,y: x +y,lt1,lt2)35 print(list(mo))36

37

38 '''模板六:求字符串中每个单词的长度content = "welcome to shanghai", 结果:[7,2,8]'''

40 #使用切割的思想:切完之后得到一个列表对象,内部元素["welcome","to","shanghai"]

41 words_list =content.split()42 mo =map(len,words_list)43 print(list(mo))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值