飞院计算机学院傅强,高飞 - 计算机学院

1.Jun Yu, Xingxin Xu, Fei Gao*, et al., “Towards Realistic Face Photo-Sketch Synthesis via Composition-Aided GANs ,” Arxiv Preprint, Arxiv:1712.00899. (Corresponding Author)

2.H. Jiang, Fei Gao*, Xingxin Xu, et al., “Attentive and Ensemble 3D Dual Path Networks for Pulmonary Nodules Classification,” Neurocomputing, 2019. (Accepted) (Corresponding Author)

3.Fei Gao, Ziyun Li, et al., “Style-adaptive Photo Aesthetic Rating via Convolutional Neural Networks and Multi-task Learning,” Neurocomputing, 2019. (Accepted)

4.Fei Gao, Jun Yu, Suguo Zhu, Qingming Huang, Qi Tian, “Blind Image Quality Prediction by Exploiting Multi-level Deep Representations,” Pattern Recognition, vol 81, pp. 432-442, Sep. 2018.

5.Jun Yu, Kejia Sun, Fei Gao *, Suguo Zhu, “Face biometric quality assessment via light CNN,” Pattern Recognition Letters, vol. 107, pp. 25-32, 1 May 2018. (Corresponding Author)

6.J. Yu, X. Yang, Fei Gao, et al., “Deep Multimodal Distance Metric Learning Using Click Constraints for Image Ranking,” in IEEE Transactions on Cybernetics, vol. 47, no. 12, pp. 4014 - 4024, Dec. 2017

7.Fei Gao, Yi Wang, Panpeng Li, et al., “DeepSim: Deep similarity for image quality assessment,” Neurocomputing, vol. 157, pp. 104-114, 2017.

8.Fei Gao and Jun Yu, “Biologically inspired image quality assessment,” Signal Processing, vol. 124, pp. 210-219, 2016. (ESI Highly Cited Papers)

9.Fei Gao, Dacheng Tao, Xinbo Gao, and Xuelong Li, “Learning to rank for blind image quality assessment,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 10, pp. 2275-2290, Oct. 2015.

10.Xinbo Gao, Fei Gao, Dacheng Tao, and Xuelong Li, “Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12, pp. 2013-2026, 2013.

Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, the acquisition of image quality scores has several limitations: 1) scores are not precise, because subjects are usually uncertain about which score most precisely represents the perceptual quality of a given image; 2) subjective judgments of quality may be biased by image content; 3) the quality scales between different distortion categories are inconsistent, because images corrupted by different types of distortion are evaluated independently in subjective experiments; and 4) it is challenging to obtain a large scale database, or to extend existing databases, because of the inconvenience of collecting sufficient images associated with different kinds of distortion that have diverse levels of degradation, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as “the quality of image Ia is better than that of image Ib” for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso (MKLGL) to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves comparable performance to state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值