中小学学习群和10万个家庭一起成长进群
学习群推出全新栏目——“北师大版数学微课堂”欢迎大家分享+收藏哦~
视频讲解
知识点
知识点总结
1.平面及平面的特征一一平整性和无限延展性。
2.平面图形是由同-一个平面内的点、线构成的图形。
3.多边形及多边形的特征一由 一些不在同一-条直
线上的线段依次首尾相连组成的封闭图形。
4.圆上A、B两点之间的部分叫做弧,由一条弧和经
过这条弧的端点的两条半径所组成的图形叫做扇形。
5.圆可以分割成若干个扇形。
在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形(polygon).如果一个多边形由 n 条线段组成,那么这个多边形就叫做 n 边形.多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做凸多边形,在这条直线的两侧,这样的多边形叫做凹多边形.
【正多边形】
各个角都相等,各边都相等的多边形叫做正多边形(regular polygon).
平面镶嵌(密铺)
1.平面图形的镶嵌(密铺)概念:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的镶嵌(密铺)。
2.理解平面图形的密铺:
(1)要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°。
(2)单一多边形密铺:任意三角形(6个)、四边形(4个)、正六边形(3个)可以密铺;
(3)单一正n边形密铺的条件:如果360°除以正n边形的一个内角等于整数,则可以单独用它密铺;就是说:正多边形的一个内角度数能整除360°。
(4)多种正多边形组合起来镶嵌成一个平面的条件:
a. n个正多边形中的一个内角的倍数的和是360°;
b. n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍。
导学案
多边形和圆的初步认识
【学习目标】
1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;
2.在具体情景中认识多边形、正多边形、圆、扇形;
3.能根据扇形和圆的关系求扇形的圆心角的度数;
4.在丰富的活动中发展有条理的思考和表达能力.
【要点梳理】
要点一、多边形及正多边形
1.定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:
要点诠释:
正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;
2.相关概念:
顶点:每相邻两条边的公共端点叫做多边形的顶点.
边:组成多边形的各条线段叫做多边形的边.