stata怎么判断是否存在异常值_异常值的识别与处理,看这一篇就够了

本文详细介绍了异常值的定义、判断方法,包括数字标准、3σ原则,以及利用箱盒图、描述分析和散点图进行识别。同时,提供了异常值的处理策略,包括设为缺失值、填补和不处理,并推荐使用SPSSAU工具进行操作。在处理异常值时,需要注意异常值可能携带的信息,并谨慎决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:异常值的识别与处理,看这一篇就够了

在数据分析工作中,面对收集而来的数据,数据清洗是首要环节。而异常值处理是其中的一个重要部分。下面就给大家介绍一下如何处理数据中的异常值。

一、异常值判断

何为异常值?

异常值,指的是样本中的一些数值明显偏离其余数值的样本点,所以也称为离群点。异常值分析就是要将这些离群点找出来,然后进行分析。

异常值判断

在不同的数据中,鉴别异常值有不同的标准,常规有以下几种:

(1)数字超过某个标准值

这是最常用的异常值判断方法之一。主要是看数据中的最大值或最小值,依据专业知识或个人经验,判断是否超过了理论范围值,数据中有没有明显不符合实际情况的错误。

比如,测量成年男性身高(M),出现17.8m这样的数据,显然不符合实际情况。

又或者,如问卷数据使用1-5级量表进行研究,出现-2,-3这类数据,则可能提示为跳转题、空选等。

(2)数据大于±3标准差

3σ 原则是在数据服从正态分布的时候用的比较多,在这种情况下,异常值被定义为一组测定值中与平均值的偏差超过3倍标准差的值。

在数据处理的时候,按照正态分布的性质,三个标准差以外的数据都可以被看作是错误的数据从而排除掉。

二、异常值的鉴别

(1)箱盒图

箱盒图很适合鉴别异常值,具体的判断标准是计算出数据中的最小估计值和最大估计值。如果数据数据超过这一范围,说明该值可能为异常值。箱盒

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值