matlab做三次拉格朗日插值多项式_关于插值拟合的若干问题

在接触高等数学,数学建模的时候,难免会听到插值拟合字眼,什么拉格朗日插值,牛顿差值,龙贝格算法,最小二乘法等等,鉴于自己跟着师上课的学听不懂,自己看书理解存在困难,后来通过慕课,终于自己似乎有一点搞懂了事情的来龙去脉,虽说每一种算法不能说是精通,但是他们不再是一颗散落的珠子,这也和当时安装软件ABAQUS时的场景类似,装装卸卸五次才成功,可谓是各种BUG都见过了,当时最后一遍安装成功后,特别开心,于是就有小想法,把自己学习或者生活中遇到的困难以及自己解决的途径写下来未尝不是一件有意义的事情。但是当时由于没有坚持写下来,以至于时至今日自己安装肯定依旧会BUG百出,并且很可能会不知道如何解决。鉴于此,我觉得有必要现在把数值分析的插值拟合心得感悟写下来。便有了接下来的这篇文章。

首先:为甚么要要用插值呢?插值即已知某函数在N个节点处的函数值,现在想要预测其在某点的函数值,例如已知某小区过去一年的每天用水量,现在想要预测未来一个月的居民用水量,这时就可以利用插值来求出该小区用水量与时间的关系,用一个函数来描述。由于多项式函数较简单,计算机比较容易实现,所以大多数用多项式来拟合。而且根据线性代数相关知识,知道已知N+1个结点,满足该插值多项式在此N+1个节点处的函数值与已知的函数值相等,由克拉默法则可知该多项式存在且唯一。接下来就有好多牛人提出来好多方法来找此多项式。首先出场的是拉格朗日,拉格朗日提出了一种比较简单易记得拉格朗日插值法(具体的我这里不写了,可以自行百度),但是呢拉格朗日的方法有一定的局限,那就是不具有继承性。举个例子来说就是:假如今天领导让你计算近七年某小区的用水量的与时间的函数关系式,你费了九牛二虎之力终于算出来了,七年的数据,是多么的庞大,可是第二天,领导告诉你说昨天少给你了一个数据,让你把那个数据也给加上,这时估计你就要吐血了。之前所算的东西全部不能用了。一切推倒重来。所以说拉格朗日的方法不具有继承性。那么为了解决这一问题,牛顿出来了,牛顿是真的牛,不仅在物理方面提出了三大定律,在数学方面和莱布尼兹几乎同步提出了牛顿-莱布尼兹公式成为了沟通微分和积分之间的桥梁。这里牛顿也提出了计算插值多项式的方法,即牛顿插值。用牛顿插值,可以解决拉格朗日插值不具继承性这一问题。如果遇到了上述情况,你 不用吐血了,只需要在昨天计算的多项式的基础上在加一项即可,轻轻松松解决问题。那么问题来了,牛顿的既然这么好了,那接下来是不是没后人什么事了?错,人无完人嘛,试想七年的数据,共有7*365个,那用牛顿的方法计算出来的是一个7*365-1次的多项式,你见过这么高次的多项式吗?实践证明,用高次多项式差不多超过十次的就会有严重的龙格现象,那什么是龙格现象呢?龙格现象即在在插值点处的函数值相等,但在插值点以外的会出现严重的振荡现象,具体的可以百度搜索一下,一个例子就能看懂。这时候就出现了分段低次插值。即将原来的区间分成好多个小区间,在每个小区间内用低次插值。关于分段低次插值也有好多大咖做了研究,最经典的是三次样条插值。即在每个小区间内用三次多项式进行近似。有些还有一些倒数之类,这就有埃尔米特等插值方法了,但主要的就是上面说的三种了。

衡量一个算法的好坏有两个标准:①算的快②算得准。刚刚只是说了算的快,还没说算的准,算的准即误差研究,其实无论用拉格朗日还是用牛顿方法算出来的都是同一个多项式,即方法不同,但目的地是一样的。所以误差也是一样的。

再来说拟合,拟合也是已知很多个结点,来找一个函数来预测,但拟合和插值的区别就是,插值多项式函数过每一个结点,在每一个结点处的残差是0,而拟合是根据数据点的特征找到一个更适合它的函数,而并不一定每个都经过每一个结点。即在结点出存在残差。这时如何找到使得所找函数在每个点的残差都足够小是拟合所解决的问题,而拟合常用的方法即为最小二乘法。即使得每个点处的残差平方和最小。

关于拟合的其他若干方法,以后再说。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值