【机器学习笔记】支持向量机


个人学习笔记,参考B站 《机器学习白板推导系列》课程、周志华《机器学习》、李航《统计学习方法》。

1 SVM原理

SVM有三宝,间隔、对偶、核技巧。

支持向量机:

  • 硬间隔(hard-margin SVM)
  • 软间隔(soft-margin SVM)
  • 核函数(kernel SVM)

1.1 硬间隔分类器

1.1.1 最大间隔分类器

设定:

  1. 分类超平面为: w T x + b = 0 w^Tx + b = 0 wTx+b=0
  2. 数据集: D ∈ { ( x i , y i ) } n = 1 N D \in \{(x_i,y_i)\}_{n=1}^{N} D{ (xi,yi)}n=1N
  3. x i ∈ R p , y ∈ { − 1 , 1 } x_i \in R^p,y \in \{-1,1\} xiRpy{ 1,1}

硬间隔分类器,也称为“最大间隔分类器”,根据定义原问题可以写成:
max ⁡ w , b m a r g i n ( w , b ) s . t . { w T x i + b > 0 , y i = + 1 w T x i + b < 0 , y i = − 1 \begin{aligned} & \max_{w,b} margin(w, b) \\ & s.t. \begin{cases} w^Tx_i+b>0,y_i=+1 \\ w^Tx_i+b<0,y_i=-1 \end{cases} \end{aligned} w,bmaxmargin(w,b)s.t.{ wTxi+b>0yi=+1wTxi+b<0yi=1
margin为所有样本到超平面最小的距离。 定义 m a r g i n ( w , b ) margin(w,b) margin(w,b) :
m a r g i n ( w , b ) = min ⁡ w , b , x i , i = 1 , 2 , ⋯   , N d i s t a n c e ( w , b , x i ) margin(w,b)=\min_{w,b,x_i,i=1,2,\cdots,N} distance(w,b,x_i) margin(w,b)=w,b,xi,i=1,2,,Nmindistance(w,b,xi)
distance为样本 x i x_i xi 到超平面的距离。 定义点 x i x_i xi到超平面 w T x + b w^Tx+b wTx+b的距离 d i s t a n c e ( w , b , x i ) distance(w,b,x_i) distance(w,b,xi) 为:
d i s t a n c e ( x , b , x i ) = ∣ w T x i + b ∣ ∣ ∣ w ∣ ∣ distance(x,b,x_i)=\frac{|w^Tx_i+b|}{||w||} distance(x,b,xi)=wwTxi+b

1.1.2 损失函数

整理上一节公式得到:
max ⁡ w , b min ⁡ x i ∣ w T x i + b ∣ ∣ ∣ w ∣ ∣ = max ⁡ w , b 1 ∣ ∣ w ∣ ∣ min ⁡ x i ∣ w T x i + b ∣ = max ⁡ w , b 1 ∣ ∣ w ∣ ∣ min ⁡ x i y i ( w T x i + b ) ∵    y i ( x T x i + b ) > 0 ∴    ∃ r > 0 , 使 min ⁡ x i y i ( w T x i + b ) = r 令   r = 1 , 则 min ⁡ x i y i ( w T x i + b ) = 1 \begin{aligned} & \max_{w,b} \min_{x_i} \frac{|w^Tx_i+b|}{||w||} \\ & =\max_{w,b} \frac{1}{||w||} \min_{x_i} |w^Tx_i+b| \\ & = \max_{w,b} \frac{1}{||w||} \min_{x_i} y_i(w^Tx_i+b) \\ & \because \ \ y_i(x^Tx_i+b)>0 \\ & \therefore \ \ \exists r>0,使 \min_{x_i} y_i(w^Tx_i+b)=r \\ & 令\ r=1,则 \min_{x_i} y_i(w^Tx_i+b)=1 \\ \end{aligned} w,bmaxximinwwTxi+b=w,bmaxw1ximinwTxi+b=w,bmaxw1ximinyi(wTxi+b)  yi(xTxi+b)>0  r>0使ximinyi(wTxi+b)=r r=1ximinyi(wTxi+b)=1
即:
{ max ⁡ w , b ∣ ∣ w ∣ ∣ − 1 s . t .     min ⁡ x i y i ( w T x i + b ) = 1 转 换 形 式 : { min ⁡ w , b ∣ ∣ w ∣ ∣ s . t .     y i ( w T x i + b ) ≥ 1 \begin{aligned} & \begin{cases} \max_{w,b} {||w||}^{-1} \\ s.t. \ \ \ \min_{x_i} y_i(w^Tx_i+b)=1 \end{cases} \\ \\ & 转换形式: \\ \\ & \begin{cases} \min_{w,b} ||w|| \\ s.t. \ \ \ y_i(w^Tx_i+b) \ge 1 \end{cases} \end{aligned} { maxw,bw1s.t.   minxiyi(wTxi+b)=1{ minw,bws.t.   yi(wTxi+b)1
最终得到 损失函数
{ min ⁡ w , b

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值