不等式解集怎么取_苏科版数学七年级下册不等式及其性质(提高)知识讲解

0e50fb823b848321594b5c59495629d7.gif

2022南京中考家长交流群QQ群:724824123

【学习目标】

1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系。

2. 知道不等式解集的概念并会在数轴上表示解集。

3. 理解不等式的三条基本性质,并会简单应用。

【要点梳理】

知识点一、不等式的概念

一般地,用“<”、 “>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式。

要点诠释:

(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大。

(2)五种不等号的读法及其意义:

符号

读法

意义

“≠”

读作“不等于”

它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小

“<”

读作“小于”

表示左边的量比右边的量小

“>”

读作“大于”

表示左边的量比右边的量大

“≤”

读作“小于或等于”

即“不大于”,表示左边的量不大于右边的量

“≥”

读作“大于或等于”

即“不小于”,表示左边的量不小于右边的量

(2)五种不等号的读法及其意义:

(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立。

知识点二、不等式的解及解集

1.不等式的解:

能使不等式成立的未知数的值,叫做不等式的解。

2.不等式的解集:

对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.

要点诠释:

不等式的解

是具体的未知数的值,不是一个范围

不等式的解集

是一个集合,是一个范围.其含义:

①解集中的每一个数值都能使不等式成立;

②能够使不等式成立的所有数值都在解集中

3.不等式的解集的表示方法

(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.

(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:

4733e1699ae63e251a2b8db1e029cbc2.png

要点诠释:

借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;二是确定方向,对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点。

知识点三、不等式的基本性质

不等式的基本性质1:

不等式两边加(或减)同一个数(或式子),不等号的方向不变.

用式子表示:如果a>b,那么a±c>b±c.

不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

75a131f9544fdbb2381a3b6342d73152.png

不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变。

43425a197e95d66ff4880816bf86ed2d.png

要点诠释: 

不等式的基本性质的掌握应注意以下几点:

(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.

(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.

【典型例题】

类型一、不等式的概念

例1.有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且下图是将糖果与砝码放在等臂天平上的两种情形。

判断下列正确的情形是 (     )

9e764a91bcee821f279d6a3d630c2ad1.png

【思路点拨】

根据图示可知1个糖果的质量>5克,3个糖果的质量<16克,依此求出1个糖果的质量取值范围,再在4个选项中找出情形正确的。

【答案】D

【解析】

解:由图(1)知,每一个糖果的重量大于5克,由图(2)知:3个糖果的重量小于

fd252153cf87e3efa7dfc6a38a107fe9.png

【总结升华】

观察图示,确定大小.本题涉及的知识点是不等式,涉及的数学思想是数形结合思想,解决问题的基本思路是根据图示信息列出不等式。

类型二、不等式的解及解集

例2. 若关于x的不等式x≤a只有三个正整数解,求a的取值范围.

【思路点拨】

首先根据题意确定三个正整数解,然后再确定a的范围. 

【答案】

3≤a<4

【解析】

解:∵不等式x≤a只有三个正整数解,

∴三个正整数解为:1,2,3,

∴3≤a<4,

【总结升华】

此题主要考查了一元一次不等式的整数解,做此题的关键是确定好三个正整数解。

例3. 如图所示,图中阴影部分表示x的取值范围,则下列表示中正确的是(   )

ede523c220e5e12dbeb96bbd031098ab.png

A.-3≤x<2    B.-3<x≤2   C.-3≤x≤2    D.-3<x<2

【思路点拨】

x表示-3右边的数,即大于-3,并且是2以及2左边的数,即小于或等于2的数.

【答案】B

【解析】

解: A、因为-3≤x<2,在数轴上-3的点应该是实心的圆点;C、因为-3≤x≤2,在数轴上-3和2的点应该都是实心的圆点;D、因为-3<x<2,在数轴上-3和2的点应该都是空心的圆点;故选B。

【总结升华】

在数轴上 表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示,“>”,“≥”向右画;“<”,“≤”向左画。

举一反三:

【变式】根据如图所示的程序计算,若输入x的值为1,则输出y的值为____.

0ef0c2935becd59ded08aaa4d843478c.png

【答案】4

提示:由程序图可知,计算求值时所使用的数学表达式为y=2x²-4.把x=1输入求值,若求得的结果大于0,则直接得到输出值y;若求得的结果小于0,则需要把得到的结果作为输入值再代入计算,循环往复,直到使最终的结果大于0为止。

类型三、不等式的基本性质

e29e1b2afc77c8b1306def3ac2180ef1.png

【思路点拨】

观察方程组不难发现只要把两个方程相加即能求出x+y的值.因为x+y<2,故可以构建关于a的不等式.然后利用不等式的性质就能求出a的取值范围.

【答案】a<4

【解析】

解:将两方程相加得:4x+4y=4+a.

9cd310bc457d8d4e19a88732fc7db06c.png

将不等式的两边同乘以4得4+a<8.

将不等式的两边同时减去4得a<4.

故a的取值范围是a<4.

【总结升华】

解关于x的一元一次不等式,就是要将不等式逐步化为x>a或x<a的形式,化简的依据是不等式的性质.

举一反三:

【变式1】

1fc2baaffb4773470a26df9ba768b1e5.png

【答案】

a>1.

【解析】

45d956afce7fdcad2c4cd93f34d05a47.png

【变式2】a、b是有理数,下列各式中成立的是(    ).

A.若a>b,则a²>b²;   

B.若a²>b²,则a>b  

C.若a≠b,则|a|≠|b|   

D.若|a|≠|b|,则a≠b

【答案】

f63c461686ae0feec05d359243f9c9c6.png

a8cbc64c42fa67c0f0340bc98d3de98e.gif

4f4ae4d5b42cdbb44f570632056a265f.png

免责申明:本音频、视频和相关素材来源于网络。转载出于传递信息和学习之目的。如转载涉及版权等问题, 请立即联系管理员,我们会更改或删除相关文章,保证您的权利。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值