回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
全排列问题,子集问题,组合和问题都是经典的回溯问题。
给定一个没有重复数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
解题思路:
1,可以递归解
2,对于长度为n的全排列,对于任意一个元素,与长度为n-l的全排列拼接而成
3,注意golang slice append的坑
代码:
func permute(nums []int) [][]int { var a [][]int if len(nums)==0{ return a } if len(nums)==1{ return append(a,nums) } for i:=0;i<len(nums);i++{ aa:=permute(rest(nums,i)) for j:=0;j<len(aa);j++{ a=append(a,append([]int{nums[i]},aa[j]...)) } } return a}func rest(nums []int,i int)[]int{ if i==0{ return nums[1:] } if i==len(nums)-1{ return nums[:len(nums)-1] } return append(nums[0:i:i],nums[i+1:]...)}
给定一个可包含重复数字的序列,返回所有不重复的全排列。
示例:
输入: [1,1,2]输出:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
解题思路类似,只是求并集的时候,对比如果有就不并入
func permuteUnique(nums []int) [][]int { var a [][]int if len(nums) == 0 { return a } if len(nums) == 1 { return merge(a, nums) } for i := 0; i < len(nums); i++ { aa := permuteUnique(rest(nums, i)) for j := 0; j < len(aa); j++ { b := append([]int{nums[i]}, aa[j]...) a = merge(a, b) } } return a}func merge(a [][]int, b []int) [][]int { l := len(a) if l == 0 { a = append(a, b) } else { m := false for k := 0; k < l; k++ { if match(b, a[k]) { m = true } } if !m { a = append(a, b) } } return a}func match(a, b []int) bool { if len(a) == 0 { return false } for i := 0; i < len(a); i++ { if a[i] != b[i] { return false } } return true}func rest(nums []int, i int) []int { if i == 0 { return nums[1:] } if i == len(nums)-1 { return nums[:len(nums)-1] } return append(nums[0:i:i], nums[i+1:]...)}
推荐阅读
Go 刷 LeetCode 系列:动态规划(7)通配符
Go 刷 Leetcode 系列:恢复二叉搜索树
喜欢本文的朋友,欢迎关注“Go语言中文网”:
Go语言中文网启用微信学习交流群,欢迎加微信:274768166