某个招聘网站的验证码识别,过程如下
一: 原始验证码:
二: 首先对验证码进行分析,该验证码的数字颜色有变化,这个就是识别这个验证码遇到的比较难的问题,解决方法是使用PIL 中的 getpixel 方法进行变色处理,统一把非黑色的像素点变成黑色
变色后的图片
三: 通过观察,发现该验证码有折线,需要对图片进行降噪处理。
降噪后的图片
四:识别:
这里只是简单的使用 pytesseract 模块进行识别
识别结果如下:
总共十一个验证码,识别出来了9个,综合识别率是百分之八十。
总结:验证码识别只是简单调用了一下Python的第三方库,本验证码的识别难点如果给带颜色的数字变色。
下面是代码:
二值化变色:
#-*-coding:utf-8-*-
from PIL importImagedeftest(path):
img=Image.open(path)
w,h=img.sizefor x inrange(w):for y inrange(h):
r,g,b=img.getpixel((x,y))if 190<=r<=255 and 170<=g<=255 and 0<=b<=140:
img.putpixel((x,y),(0,0,0))if 0<=r<=90 and 210<=g<=255 and 0<=b<=90:
img.putpixel((x,y),(0,0,0))
img=img.convert('L').point([0]*150+[1]*(256-150),'1')returnimgfor i in range(1,13):
path= str(i) + '.jpg'im=test(path)
path= path.replace('jpg','png')
im.save(path)
二:降噪
#-*-coding:utf-8-*-
#coding:utf-8
importsys, osfrom PIL importImage, ImageDraw#二值数组
t2val ={}deftwoValue(image, G):for y in xrange(0, image.size[1]):for x inxrange(0, image.size[0]):
g=image.getpixel((x, y))if g >G:
t2val[(x, y)]= 1
else:
t2val[(x, y)]=0#根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0
defclearNoise(image, N, Z):for i inxrange(0, Z):
t2val[(0, 0)]= 1t2val[(image.size[0]- 1, image.size[1] - 1)] = 1
for x in xrange(1, image.size[0] - 1):for y in xrange(1, image.size[1] - 1):
nearDots=0
L=t2val[(x, y)]if L == t2val[(x - 1, y - 1)]:
nearDots+= 1
if L == t2val[(x - 1, y)]:
nearDots+= 1
if L == t2val[(x - 1, y + 1)]:
nearDots+= 1
if L == t2val[(x, y - 1)]:
nearDots+= 1
if L == t2val[(x, y + 1)]:
nearDots+= 1
if L == t2val[(x + 1, y - 1)]:
nearDots+= 1
if L == t2val[(x + 1, y)]:
nearDots+= 1
if L == t2val[(x + 1, y + 1)]:
nearDots+= 1
if nearDots
t2val[(x, y)]= 1
defsaveImage(filename, size):
image= Image.new("1", size)
draw=ImageDraw.Draw(image)for x inxrange(0, size[0]):for y in xrange(0, size[1]):
draw.point((x, y), t2val[(x, y)])
image.save(filename)for i in range(1,12):
path= str(i) + ".png"image= Image.open(path).convert("L")
twoValue(image,100)
clearNoise(image,3, 2)
path1= str(i) + ".jpeg"saveImage(path1, image.size)
三:识别
#-*-coding:utf-8-*-
from PIL importImageimportpytesseractdefrecognize_captcha(img_path):
im=Image.open(img_path)#threshold = 140
#table = []
#for i in range(256):
#if i < threshold:
#table.append(0)
#else:
#table.append(1)
# #out = im.point(table, '1')
num =pytesseract.image_to_string(im)returnnumif __name__ == '__main__':for i in range(1, 12):
img_path= str(i) + ".jpeg"res=recognize_captcha(img_path)
strs= res.split("\n")if len(strs) >=1:print (strs[0])