python 验证码_python 验证码识别示例(一) 某个网站验证码识别

某个招聘网站的验证码识别,过程如下

一: 原始验证码:

945786-20180803173058186-1096412792.png

二: 首先对验证码进行分析,该验证码的数字颜色有变化,这个就是识别这个验证码遇到的比较难的问题,解决方法是使用PIL 中的 getpixel 方法进行变色处理,统一把非黑色的像素点变成黑色

945786-20180803173447364-549131159.png

变色后的图片

三: 通过观察,发现该验证码有折线,需要对图片进行降噪处理。

945786-20180803173605709-286158549.png

降噪后的图片

四:识别:

这里只是简单的使用 pytesseract 模块进行识别

识别结果如下:

945786-20180803180208996-340335758.png

总共十一个验证码,识别出来了9个,综合识别率是百分之八十。

总结:验证码识别只是简单调用了一下Python的第三方库,本验证码的识别难点如果给带颜色的数字变色。

下面是代码:

二值化变色:

#-*-coding:utf-8-*-

from PIL importImagedeftest(path):

img=Image.open(path)

w,h=img.sizefor x inrange(w):for y inrange(h):

r,g,b=img.getpixel((x,y))if 190<=r<=255 and 170<=g<=255 and 0<=b<=140:

img.putpixel((x,y),(0,0,0))if 0<=r<=90 and 210<=g<=255 and 0<=b<=90:

img.putpixel((x,y),(0,0,0))

img=img.convert('L').point([0]*150+[1]*(256-150),'1')returnimgfor i in range(1,13):

path= str(i) + '.jpg'im=test(path)

path= path.replace('jpg','png')

im.save(path)

二:降噪

#-*-coding:utf-8-*-

#coding:utf-8

importsys, osfrom PIL importImage, ImageDraw#二值数组

t2val ={}deftwoValue(image, G):for y in xrange(0, image.size[1]):for x inxrange(0, image.size[0]):

g=image.getpixel((x, y))if g >G:

t2val[(x, y)]= 1

else:

t2val[(x, y)]=0#根据一个点A的RGB值,与周围的8个点的RBG值比较,设定一个值N(0

defclearNoise(image, N, Z):for i inxrange(0, Z):

t2val[(0, 0)]= 1t2val[(image.size[0]- 1, image.size[1] - 1)] = 1

for x in xrange(1, image.size[0] - 1):for y in xrange(1, image.size[1] - 1):

nearDots=0

L=t2val[(x, y)]if L == t2val[(x - 1, y - 1)]:

nearDots+= 1

if L == t2val[(x - 1, y)]:

nearDots+= 1

if L == t2val[(x - 1, y + 1)]:

nearDots+= 1

if L == t2val[(x, y - 1)]:

nearDots+= 1

if L == t2val[(x, y + 1)]:

nearDots+= 1

if L == t2val[(x + 1, y - 1)]:

nearDots+= 1

if L == t2val[(x + 1, y)]:

nearDots+= 1

if L == t2val[(x + 1, y + 1)]:

nearDots+= 1

if nearDots

t2val[(x, y)]= 1

defsaveImage(filename, size):

image= Image.new("1", size)

draw=ImageDraw.Draw(image)for x inxrange(0, size[0]):for y in xrange(0, size[1]):

draw.point((x, y), t2val[(x, y)])

image.save(filename)for i in range(1,12):

path= str(i) + ".png"image= Image.open(path).convert("L")

twoValue(image,100)

clearNoise(image,3, 2)

path1= str(i) + ".jpeg"saveImage(path1, image.size)

三:识别

#-*-coding:utf-8-*-

from PIL importImageimportpytesseractdefrecognize_captcha(img_path):

im=Image.open(img_path)#threshold = 140

#table = []

#for i in range(256):

#if i < threshold:

#table.append(0)

#else:

#table.append(1)

# #out = im.point(table, '1')

num =pytesseract.image_to_string(im)returnnumif __name__ == '__main__':for i in range(1, 12):

img_path= str(i) + ".jpeg"res=recognize_captcha(img_path)

strs= res.split("\n")if len(strs) >=1:print (strs[0])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值