自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(191)
  • 资源 (17)
  • 收藏
  • 关注

原创 联宝盒子算法迁移

环境搭建

2022-10-26 16:50:56 305 1

原创 联宝盒子,跨盒子运行打包二进制文件出现问题记录

联宝盒子,跨盒子运行打包二进制文件出现问题记录

2022-06-28 15:41:59 309

原创 联保lcfc问题处理

1、安装包没有问题处理:安装好cuda,torch,numpy等第三方包,直接复制图为盒子里面已将装好的。可以参考前面的博客记录。2、数据库打开失败,报错如下:处理方法:1、修改smart_box.db路径2、后台代码启动运行,前端可以看到算法已启用,有对应的抓拍结果,如下:说明已经成功了。。。...

2022-03-03 10:24:05 1199

原创 切换算法,实效问题

三个盒子,其中两个盒子切换算法没有问题,第三组盒子,切换算法,循环中断。具体如下:车牌识别-------》人脸识别从上可以看出:到了【face】....003这里不往下走了,取人脸特征这步中断了,只有重新打点日志看看,并保存图片,是不是图片本身有问题,还是取特征库本身有问题。人脸识别-------》车牌识别从上可以看出:到了【lpr】....003这里不往下走了函数本身肯定没有问题,那可能就是图片有问题了。保存图片image,看看。...

2022-02-09 16:54:21 284

原创 DREAM侧脸模型训练

GitHub - penincillin/DREAM: This is the public repository for our accepted CVPR 2018 paper "Pose-Robust Face Recognition via Deep Residual Equivariant Mapping"https://github.com/penincillin/DREAM

2022-01-21 14:19:17 909

原创 英伟达图为盒子安装远程控制工具

首先想到向日葵1.官网下载,选择图形版本2.执行命令安装sudo dpkg -i SunloginClient-10.1.1.38139_amd64.deb3.如果出现错误:dpkg :dependency problems -leaving unconfiguredsudo apt-get -f install重新执行命令安装nvidia@nano:~/work$nvidia@nano:~/work$ sudo dpkg -i sunloginclientshe

2022-01-19 11:43:45 2407

原创 Ubuntu设置自启动软件

1、进入到/home/用户名 路径下:2、进入终端输入创建一个后缀为.sh的脚本文件touch Auto_smartbox.sh编辑脚本vim Auto_smartbox.shtest.sh编写脚本内容,以#!/bin/bash开头 中间写脚本内容 exit0结尾3.移动test.sh文件到/etc/init.d目录下移动文件sudo mv Auto_smartbox.sh /etc/init.d/给文件增加权限chmod +750 Aut

2022-01-18 10:36:17 3916

原创 TypeError: str, bytes or bytearray expected, not int

问题:TypeError: str, bytes or bytearray expected, not int/usr/local/lib/python3.6/dist-packages//home/nvidia/.local/lib/python3.6/site-packages/

2022-01-14 10:37:00 1217

原创 yolov5 gpu模型转成 cpu

生成好了cpu的模型后,还原原来的GPU模式,即可。

2021-11-19 09:04:57 1660

原创 2021-11-04 阳光城网络配置

摄像头IP如下, 账号admin密码admin192.168.15.51192.168.15.52192.168.15.53192.168.15.54手动配置外网IP,设置到15网段。是否摄像头加密了?

2021-11-04 15:39:08 136

原创 (三)黑眼圈检测

# 调用API, 获取黑眼圈识别返回的结果import requestsimport base64url = 'https://api.yimei.ai/v2/api/face/analysis/131072'client_id = "ac80f9d866da8111"client_secret = "c17f3c9988364ef24c9355fab26dd111"authorization = 'Basic ' + str(base64.b64encode((client_id + ':.

2021-09-30 09:32:55 617

原创 视频取帧python方法-支持鹰眼高分辨率视频流

import cv2import os#要提取视频的文件名,隐藏后缀sourceFileName='VODFile1'#在这里把后缀接上video_path = os.path.join("", "", sourceFileName+'.flv')times=0#提取视频的频率,每25帧提取一个frameFrequency=25#输出图片到当前目录vedio文件夹下outPutDirName='vedio/'+sourceFileName+'/'if not os.path.exis.

2021-09-29 18:10:12 263

原创 (二)情感识别调用API

import requestsimport base64url = 'https://api.yimei.ai/v2/api/face/analysis/1073741824'client_id = "ac80f9d866da8111"client_secret = "c17f3c9988364ef24c9355fab26dd111"authorization = 'Basic ' + str(base64.b64encode((client_id + ':' + client_secret).

2021-09-24 15:41:09 230

原创 tornado打包问题记录

import tornadoimport tornado.ioloopimport tornado.webclass MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, world")def make_app(): return tornado.web.Application([ (r"/", MainHandler), ])def Fu.

2021-08-19 10:47:26 392 2

原创 英伟达开发板打包遇到问题记录

1、简单版本import osif __name__ == "__main__": print('linux dabao to exe ......................')打包命令如下,pyinstaller -F websockets_dabao.py打包成功:运行结果:2、增加第三方库import osimport websocketsif __name__ == "__main__": print('linux dabao to..

2021-08-10 17:32:35 667

原创 pyinstaller在linux打包后运行遇到websockets库问题

1、安装pyinstallerpip install pyinstaller比较慢,耐心等待,因为依赖的库比较多2、打包命令打包smart-box工程,cd到需要打包的主程序文件路径下,执行如下命令pyinstaller -F runserver.py3、运行可执行程序./runserver报错信息如下:在打包时候,并没有提示错误,可以顺利打包成 exe 文件。但是在运行打包好的软件时,会提示找不到模块,本人遇到的是找不到第三方模块,例如 requ...

2021-08-04 15:44:42 2291

原创 2021-01-24 mtcnn理论理解

MTCNN主要分为三个网络 PNet RNet ONet其中PNet是个全卷积网络 这是和RNet ONet最大的区别Pnet网络结构https://github.com/Cv9527/mtcnn-2/blob/master/train/det1-train.prototxt,讲改网络的描述文件.prototxt内容复制到左边的编辑框中,显示结构如下:左边是训练过程的,右边是测试过程的,直接分析测试过程的流程图。如下:data--->conv1 22-3+1 = 1..

2021-06-16 16:51:58 137

原创 反光衣检测 Reflective clothing detect 深度学习算法 自建数据集训练模型

学习目标:​ 1.爬虫反光衣数据集,手动标注车辆。​ 2.训练:使用YOLOV5训练出检测车辆模型。3.测试:输出检测出车辆位置,和置信度概率。结果如下:识别率可达99%以上

2021-06-03 20:52:23 2558 15

原创 车辆检测 car detect 深度学习算法 自建数据集训练模型

学习目标:​ 1.在汽车检测数据集上应用目标检测​ 2.处理边界框运行以下单元下载有有助于实现车辆检测的包和依赖项。

2021-06-03 20:27:50 1186 2

原创 2021-05-18 人头检测 version-slim(主干精简速度略快),version-RFB(加入了修改后的RFB模块,精度更高)

进入/home/work/detector/路径下:1、训练过程[root@localhost detector] sh train-version-RFB.sh2、测试过程[root@localhost detector]# python detect_imgs.py

2021-05-18 18:29:37 323

原创 2021-05-12 轻量级人脸检测模型训练和测试

[English](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB) | [中文简体](https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB/blob/master/README_CN.md )# Ultra-Light-Fast-Generic-Face-Detector-1MB# 轻量级人脸检测模型![img1](htt.

2021-05-12 10:06:27 1630 1

原创 YOLOv5-pytorch转ncnn模型

本文记录了yolov5迁移转ncnn模型的详细过程流程三步走:1、pytorch转换成onnx; 2、onnx转换成ncnn;3、在android部署ncnn。在此感谢逝去的头发 o(╥﹏╥)o一、pytorch -> onnx1、 打开yolov5/models/export.py,修改红色框路径转换后我们得到 yolov5s.onnx2、去掉onnx模型的冗余维度pip install onnx-simplifierpython -m onnxsim yo

2021-04-03 23:50:23 1673 2

原创 gitee码云完整使用教程(部署与克隆)

1.创建仓库登录码云 https://gitee.com/创建一个仓库2.使用git在本地初始化(1)新建一个目录,存放下载下来的项目,我在D盘新建了一个“gitspace”文件夹,用来存放下载下来的项目(2)进入刚刚新建的文件夹,即进入“gitspace”,点击鼠标右键,选择"Git Bash Here",如下图:点击“Git Bash Here”之后,可以看到下面界面(3)进行基础配置,作为 git 的基础配置,作用是告诉 git 你是谁,你输入的信息将出现在你创建的提交中,

2021-03-03 10:36:28 640

原创 2020-12-08到09 caffe-ocr 训练测试方式

E:\caffe_ocr\caffe_model3\train_data string imgfolder = "E:\\caffe_ocr\\caffe_model3\\train_data\\"; string modelfolder = "E:\\caffe_ocr\\caffe_model3\\inception-bn-res-blstm\\";训练样本400张,样本内容重复:WIOA3261。测试该图片,识别正确string imgfolder = "E:\\caffe_ocr\.

2020-12-09 15:37:48 483

原创 基于win10+CUDA10.2+cuDNN+Anaconda的Tensorflow(GPU) & PyTroch安装

一. 电脑配置如下:写在前面,本机的电脑配置如下:System:windows 10 专业版 (64位) CPU:i5-9400F RAM:16G(2666MHz) 显卡:GEFORCE GTX 1660 Ti (万图师 Ti OC)首先,在安装之前需要查看显卡所能支持的最高CUDA版本,打开【NVIDIA控制面板】,选择左下角的【系统信息】选项,并点击【组件】按钮进入到如下界面:从图中我们可看出,GTX 1660 Ti 的显卡支持CUDA 10.2版本的。因此,我们基于10.2版本

2020-11-22 14:18:00 366

原创 windows caffe cpu 之 mnist入门训练和测试

本教程尽量详细,大多步骤都有图,如果运行出错,请先对照自己的文件是否和图上的一样,包括标点啊,空格啊,斜杠,反斜杠啊之类的小细节。第一步: 官网下载mnist数据http://yann.lecun.com/exdb/mnist/,共4个文件,解压放到caffe-master\data\mnist下如图:第二步:转换成caffe需要的数据格式,此处转换为 LMDB(cifar是转换成 LEVELDB,可对比参考如何实现的) ,转换格式需要用到caffe里的项目convert_mnist...

2020-10-29 14:19:08 301

原创 win10+VS2013+CPU-Only安装与配置Caffe

https://github.com/BVLC/caffe/tree/windows最近在配Caffe,由于我的电脑显卡不是NVIDIA的,所以用不了cuda,所以只能配置CPU-ONLY的,关于配置的教程网上已经很多了,但是具体每个人遇到的问题不一样,我这边就尽量做一个较完整的总结吧:首先打开github上的项目Caffe for windows,这里面提供了较为完整的教程(当然里面并没有告诉你有哪些坑…),要想安装好,电脑里面要有这些东西,如下:我们一点一点分析:首先必须安装好VS201

2020-10-29 11:18:39 332

原创 欧洲国家车牌识别怎么区别1和I

英国的1和波兰的I,形态上一致,无法区别,只能通过规则来区分

2020-07-28 08:58:25 876

原创 全方位教你怎么看懂英国的车牌

在英国生活的同学们,有没有观察过英国汽车的牌照有什么规律呢?国内的车牌号大家都懂,固定省份和城市,后五位随机,英国和咱们国内还是有一些差别的。小伙伴们在路上都能看到很多机动车,挂的车牌都不同,有6位的7位的等等,这些都是什么意思呢?英国的车牌号也有地域之分吗?今天委媛就给大家普及一下英国的车牌照的小知识,由于英国各个地区以及离岛都有自己特殊的规定,这里就着重讲一下英格兰的规则。现在的规则(2001—现在)我们先看一下现在的车牌:车牌上的每个区域都有自己的意义,我们可以分为四个区域..

2020-07-24 17:22:16 10973

原创 Wider Person拥挤场景行人数据集

Wider Person拥挤场景行人数据集数据集详情:多种场景比较拥挤场景的行人检测数据集,包含13382张图片,共计40万个不同遮挡程度的人体。应用项目:人体检测数据集地址:http://www.cbsr.ia.ac.cn/users/sfzhang/WiderPerson/因为工作原因,会搜集大量的各类公开应用场景数据集,如果有同学需要其他场景或者其他项目的,也可以留言,或者发送邮件到jiangdabai@126.com,也会将对应的数据集更新到此处。WiderPe...

2020-06-24 09:26:54 3182 3

原创 Wider Face人脸数据集

数据集详情:香港中文大学发起的,包含3万张图片共40万张人脸。应用项目:人脸检测数据集地址:http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html人脸应用:中国香港大学信息工程系多媒体实验室结果我们采用与PASCAL VOC数据集相同的评估指标。如果检测到的区域与带注释的面区域的交集的比率大于0.5,则为检测到的区域分配1分,0分否则,进一步评估程序的细节可以在我们的论文中找到。评估代码下面提供了生成PR..

2020-06-24 09:21:46 5883

原创 Hog源码分析

利用opencv提取字符的Hog信息源码添加注释前,字符的Hog信息如下:opencv hog计算的梯度信息[0.33033395, 0, 0, 0, 0, 0, 0, 0, 0.33033395, 0.3601298, 0, 0, 0, 0, 0, 0, 0, 0.3601298, 0.3601298, 0, 0, 0, 0, 0, 0, 0, 0.3601298, 0.36012...

2020-01-17 10:22:03 411

原创 二次拍摄后的得到测试样本,识别效果

样本背景:摄像头拍摄的图片,被本公司的摄像头再次拍摄该图片,得到的二次图片识别结果如下:0全对*******真实:DOSR1013,**********预测:DOSR10131全对*******真实:LUNTO10,**********预测:LUNTO102全对*******真实:LUNPX175,**********预测:LUNPX1753全对*******真实:LUNDS1...

2020-01-14 17:34:34 648

原创 空洞填充处理

这个洞要不要填起来,怎么区分。

2020-01-13 09:21:50 1909

原创 图片处理之------------------干扰点去除处理

2020-01-10 19:23:29 1036

原创 CNN人脸识别

先展示一下效果:优点:可以比较正确的找出正面;缺点:偏面找不到。

2020-01-08 21:08:50 507 1

原创 解析xml文件内容

import xmlxml_file = xml.dom.minidom.parse("ann_style_14.xml")RootNode=xml_file.documentElementsubElement1=RootNode.getElementsByTagName("input_scale")subElement2=RootNode.getElementsByTagName("o...

2019-12-27 16:05:47 153

原创 编译+拷贝库到另一个路径下

make install;cp lib/libopencv_imgproc.so.2.4.9 /usr/lib/i386-linux-gnu/libopencv_imgproc.so.2.4.9root@smile-To-be-filled-by-O-E-M:/home/share/msapp# make lpr-ffgrouproot@smile-To-be-fill...

2019-12-04 11:49:13 275

原创 Ubuntu中设置某个文件夹可以被修改的权限

root@smile-To-be-filled-by-O-E-M:/home/share# root@smile-To-be-filled-by-O-E-M:/home/share# ls0 libopencv_bak openalpr222222 (澶嶄欢) opencv-2.4.9_arm-hisiv500-linux op...

2019-12-03 15:37:12 469

原创 opencv------之减法置0操作

遍历每一个像素点,小于 < 0 的,置0处理,如下图所示。Mat mat1(5, 5, CV_8U, cv::Scalar(1)); Mat mat2(5, 5, CV_8U, cv::Scalar(1)); mat1.at<uchar>(0, 0) = 255; mat1.at<uchar>(0, 1) = 0; mat1.at<uchar&gt...

2019-10-24 09:03:35 849

车牌识别第三方库.rar

车牌识别第三方库.rar,配置文件在文中已经说明好了,安装配置信息配置即可 opencv dll文件

2019-10-09

一起滑油系统金属屑故障分析

针对一次外场滑油系统检查发现金属屑的故障,通过对金属屑的分析和验证,并对燃滑油附件进行对比检查,确定了故障原因,成为滑油系统金属屑故障分析和处理的有益实践。

2019-01-18

基于声发射技术的滑动轴承故障诊断方法研究_陆利威

滑动轴承的代表性故障是轴承与轴颈的接触摩擦故障。在机械故障与转子动力学模拟实验台上模拟了滑动轴承的接触摩擦故障,利用声发射技术进行滑动轴承状态检测。实验研究结果表明声发射检测技术用于滑动轴承故障诊断切实可行,诊断结果准确可靠。

2019-01-18

基于油温与油液分析法的滑动轴承故障诊断_张春福

通过对滑动轴承故障形式及故障特征的分析,提出一种利用润滑油进出口温度和润滑油成分的变化,来判断轴承是否出现故障的方法,该方法简单可行,特别适用于滑动轴承故障诊断的初期阶段。

2019-01-18

图像引导调强放疗鼻咽癌计划靶区的算法研究

1994年美国率先在临床中开展鼻咽癌的调强放射治疗。2001年中国各大放疗中心也陆续开展了此项技术。目前有很多文献报道调强放疗不仅提高了鼻咽癌患者的疗效,而且改善了患者的生活质量。但鼻咽癌靶区特殊,照射面积大,边缘涉及的危及器官复杂。靶区的正确性和照射区域的精确性是调强放疗的关键。图像引导放疗(IGRT)是伴随调强放疗出现的。图像引导放疗是保证照射区域精确和准确的重要工具。本研究将依据经典Van Herk PTV外扩计算模型和图像引导次数建立新的计算模型。新模型建立是基于图像引导调强放疗的30例鼻咽癌患者数据,采集了795次治疗摆位偏差数据和126次治疗后摆位偏差数据。依据Van Herk计算模型,计算得到整个患者的系统误差和随机误差。在进行了795次图像引导基础上,我们对30例患者分为A、B、C三组,分别采样5-10次、10-15次和15次以上图像引导摆位偏差数据,分别用三组的原摆位偏差数据和采样数据求其系统误差和随机误差,并两两进行t检验,最后得到无显著性统计学差异(P>0.05)。建立A组PTV计算模型,Ma=2.5Σa+0.7δa-1mm,Σa和δa来源于全部患者数据(795次);C组PTV计算模型Mc=2.5Σc+0.7δc+2mm,Σc和δc来源于放疗校正后摆位数据(126次)。B组PTV计算模型:Mb=1/2(Ma+Mc)。为了验证三组修正模型的准确性,我们运用叠加计划进行验证。叠加计划是将治疗前摆位数据输入原计划中,得到实际治疗摆位偏差。只改变等中心数据,计划涉及到的处方剂量、子野形状、子野权重、子野照射剂量(MU)、射野方向、危及器官剂量等均保持不变。通过叠加计划(实际照射次数)与原计划进行对照分析。要求每项均要达到小于5%的剂量偏差。选择合适的PTV,对鼻咽癌(NPC)调强放疗至关重要。我们分别研究了将全局PTV和残余PTV作为标准计划与相应不同的PTV进行靶区剂量和危及器官剂量差异的比较。图像引导调强放疗鼻咽癌计划靶区的算法研究,可以实现计划靶区的个体化,个性化的PTV计算模型,可在减少IGRT次数的情况下达到与每次IGRT一样的治疗效果。这样既可减少患者吸收的额外剂量避免不必要的损伤,也可节约治疗时间和额外的治疗费用。个性化的PTV对临床应用具有较大的实用性。

2019-01-17

医学图像分割与三维重建

医学图像三维重建是通过计算机图形学、数字图像处理技术、计算机可视化以及人机交互等技术,把二维的医学图像序列转换为三维图像在屏幕上显示出来,并根据需要为用户提供交互处理手段的理论、方法和技术。图像分割是进行图像三维重建的必要准备,图像分割效果的优劣直接影响三维重建在医学领域的应用。医学图像分割和三维重建将数字图像处理技术和计算机图形学应用在了在生物医学工程中,该应用涉及到计算机图形学、图像处理技术、生物医学工程等多种技术,该领域的研究多学科交叉的,在医学诊断、手术规划及医学教学等方面有很高的应用价值,是近年来的计算机应用技术的一个研究热点。医学图像分割与三维重建是两个不可分割的相关领域。本文研究了基于区域的图像分割和基于边缘的两种图像分割方法在医学图像处理中的应用,并在实验中利用ITK提供的区域生长法成功分割出肝脏、脊柱和肺脏等人体组织器官;三维重建算法分为两类:面绘制和直接体绘制。面绘制从三维体数据中抽取目标对象等值面,通过传统的图形学方法进行渲染;体绘制技术则将整个体数据进行可视化显示,使医生可以通过设置适当的参数调节后观察医学数据的三维内部结构信息。本文研究了光线投射体绘制算法、错切变形法和基于纹理映射的体绘制算法,以及Marching Cubes面绘制算法的实现机制和适用范围,并利用VTK提供的三维重建算法对不同人体部位的组织和器官实现了重建实验。本文主要研究了医学图像分割与三维重建技术的应用。在对医学图像分割和三维重建基础理论以及三维重建相关的三维切割技术进行研究和实验的基础上,结合医学图像分割开发工具包ITK(Insight ToolKit)和可视化开发包VTK(Vislual ToolKit),以及ActiveX开发技术,设计了一个医学图像三维重建VolumeRenderX控件并通过MFC编程实现。这是一个面向对象、可扩展的跨IDE(Intergreted Development Enviroment)开发平台的开发控件,并针对实际应用需求整合了重建参数调节和重建体剖切等多种实用功能,相对于传统的医学图像处理与三维重建系统具有更大的应用价值。本文还提出了一个基于WEB模式的医学图像三维重建的解决方案。

2019-01-17

基于信息融合技术的航空发动机故障诊断研究

摘要:航空发动机故障诊断是航空发动机领域的重要研究方向,已经成为了目前国内外十分关注的一个研究热点。信息融合是近年来兴起的一门学科,在许多领域得到了广泛的应用和研究。在航空发动机故障诊断领域的应用尚处于不发达阶段,故障诊断中可利用的信息很多,只有充分利用有用的信息来对设备的故障进行诊断才能提高故障诊断的精度和可靠性。本文首先论述了信息融合技术的特点、形式结构和具体的处理方法,并从信息论的角度论证了信息融合技术在故障诊断中的可行性和有效性;将航空发动机故障诊断与信息融合相结合,提出了一种基于信息融合技术的发动机故障诊断模型和方法,并在此基础上,提出和分析了基于人工神经网络和D-S证据理论的信息融合故障诊断,研究了神经网络的建模方法、组建原则和实现策略,并结合诊断实例进行了分析;提出了基于D-S证据理论的决策融合,阐述了D-S证据理论的方法和模型,并结合算例进行了分析。最后将人工神经网络和D-S证据理论相结合,提出了一种决策融合诊断方法,并通过发动机转子实例验证了这种方法的可行性和有效性。本论文包括图15幅,表11个,参考文献52篇。

2019-01-16

大型旋转机械振动信号分析与早期故障辨识方法研究

摘要:绿色低碳的现代能源体系背景下,清洁能源的安全高效利用对加快能源结构调整及推进生态文明建设意义重大。作为清洁能源转换的核心设备,水电、风电机组的巨型化和耦合化使得其运行过程中的振动问题和故障风险日益突出,这对系统的振动信号分析与早期故障辨识方法提出了更高要求。因此,本文以水轮发电机组、风力发电机组等大型旋转机械为研究对象,通过凝炼系统早期故障诊断中的关键科学问题,解析了多故障源耦合激励下的系统非线性动力学特性和故障机理,深入开展了基于噪声干扰抑制和噪声辅助分析的早期故障信号辨识理论研究,提出了大型旋转机械复合故障分离与特征提取方法,构建了系统关键设备性能评估与劣化分析模型,对保障机组安全稳定运行和推进状态检修体制改革具有一定的理论创新意义和工程应用价值。论文主要研究工作及创新性成果如下:(1)针对大型旋转机械中贯流式机组操作油管不对中、受油器松动及操作油管与浮动瓦碰摩问题,建立了考虑操作油杂质影响的时变非线性油膜力模型,并搭建了多源激励下的机组耦合故障动力学模型,研究了系统随不对中分量、操作油杂质和受油器径向刚度等参数变化出现的周期运动、拟周期运动等非线性动力学行为,揭示了多故障源耦合激励下的系统动力学特性和故障机理。(2)针对大型旋转机械早期故障辨识受强背景噪声干扰问题,开展了基于噪声干扰抑制的微弱故障信号检测研究,一方面,分析了噪声强度对传统经验模态分解降噪算法中最优分量重构效果的影响,研究了不同固有模态分量重构后信号概率密度函数的豪斯多夫距离变化趋势,提出了一种基于重构信号概率密度函数相似性的经验模态分解降噪算法;另一方面,讨论了大幅值噪声信号对传统经验模态分解降噪算法中固有模态分量阈值处理效果的影响,引入了熵阈值代替直接对每个分量的采样点进行阈值化,并结合分位数理论构建了多尺度阈值并计算了原始信号所在区域的故障概率,提出了一种基于概率熵阈值的经验模态分解降噪算法。通过模型仿真、实验和工程实例验证了所提出降噪算法在大型旋转机械微弱故障信号检测中的有效性。(3)考虑基于噪声辅助分析理论随机共振来增强大型旋转机械早期故障特征,定性和定量分析了不同噪声强度下二维Duffing振子模型随机共振方法的周期特征增强效果,推导了二维Duffing振子模型随机共振现象发生的必要条件,并研究了不同参数条件下系统输出信号特征幅值随噪声强度的变化趋势。在此基础上构造了基于排列熵的信号筛选准则并提出了基于二维部分Duffing振子模型随机共振理论的故障特征增强算法,实现了噪声能量向故障信号的最大化转移,并成功应用于大型旋转机械早期磨损故障特征识别。(4)针对大型旋转机械中风电机组早期复合故障特征耦合及微弱故障信号难以识别问题,分析了复合故障模式下快速峭度图中的多个谱峭度极大值现象,建立了带通滤波器模型进行解卷积处理获取显著故障信号,并构建了带阻滤波器模型进行窄带带阻滤波滤除显著共振频谱信号从而抑制其对微弱故障特征识别影响,提出了基于连续谱峭度解卷积的早期复合故障诊断方法。通过典型模型仿真和工程实例应用表明所提出算法有效实现了大型旋转机械复合故障分离和微弱故障特征提取。(5)考虑到大型旋转机械关键设备的性能对整个系统安全稳定运行的重要性,从故障概率变化的角度开展了基于逻辑回归理论的设备劣化趋势分析和状态评估研究,引入了改进K均值聚类算法对逻辑回归模型的自变量进行离散化处理来增强模型泛化能力和鲁棒性,建立了基于数据驱动的大型旋转机械关键设备性能评估模型,并成功应用于工程实例中设备故障演化过程分析,同时对大型旋转机械早期故障辨识也有一定指导意义。

2019-01-14

P300的BCI汉字在线输入系统

针对在P300的脑-机接口(BCI)汉字输入系统中输入速度较慢的问题,开发了一套新型的汉字拼音输 入在线脑-机接口系统.用户界面中设计新型的二级选择模式,减小了用户在实验中的视角转移,并且将自然 语言处理(NLP)技术用到此系统中,可以使此套在线系统的正确率和速度都有所提高.实验结果表明:此改进 的P300-BCI系统汉字输入速率可达1.37字·min-1,有效地提高了汉字的输入速率;随着用户使用次数增 多,系统的效果会进一步得到提高,用户与外界交流将会更加方便快捷.

2018-12-11

机械故障诊断技术中的信号处理方法_时域分析

摘 要:应用信号处理方法对振动信号进行特征提取的技术是机械设备故障诊断领域的重要研究方向。常用的机 械设备故障诊断领域的信号处理方法主要包括时域分析、频域分析和时频分析。针对常用的振动信号处理方法,总结 多种算法的特征和优缺点。根据常见机械设备关键构件的振动特征,选择不同的信号处理和特征提取算法进行分析, 以便提高多种构件、多类故障的特征提取精度和可靠性,从而为有效地实现机械设备的故障提供参考。 关键词:振动与波;故障诊断;振动信号;特征提取;信号处理

2018-12-11

用于改善帕金森病冻结步态的可穿戴技术

【摘要】 冻结步态是帕金森病中一种常见的步态障碍症状,表现为患者在行走过程中的短暂停滞或起步困难等,严重影响患者的生活质量。提出一种基于引导光线提示的用于改善帕金森病冻结步态的可穿戴技术,该技术通过在患者脚前方产生一条标志光线引导患者行走,同时利用惯性传感器采集患者行走时的加速度数据,并采用冻结指数和曼-惠特尼U检验等方法分析研究引导光线提示对冻结步态的改善作用。结果表明,在0.01的显著性水平下,引导光线提示能够显著改善冻结步态。

2018-10-24

多涂层厚度涡流无损检测技术及其实现方法研究

【摘要】 随着科学技术的迅速发展和航空航天飞行器飞行速度的不断提高,使得航天高速飞行器舱体以及涡轮发动机叶片等零部件上涂覆涂层的材料与结构越来越复杂。然而涂层的厚度及涂覆的均匀性将直接影响基体的温度分布,厚度不均匀的热障涂层会造成基体局部温度的骤然升高而导致涡轮发动机以及飞行器舱体等零部件发生失效或运动状态发生改变,严重的会导致航天飞行器坠毁,从而引发一些灾难性的事故。因此,多层导电涂层厚度的无损评价已经成为高端装备制造业一个重要的研究课题。涡流无损检测技术以其低成本、高灵敏度、快速检测以及非接触式测量的特点,在航空航天、核工业等领域得到了广泛应用。本文是在中国航天科技集团第八研究院SAST基金项目“基于涡流无损检测的航天热障涂层材料厚度检测技术研究”(项目编号:SAST201220)资助下展开实验研究。本论文的主要研究内容如下:(1)根据涡流检测的基本原理及多频多参数检测理论,针对多涂层厚度的检测,设计和搭建了多频涡流检测系统,包括对激励信号源、信号调理电路、数据采集模块及数据处理程序的设计等。(2)利用搭建的实验检测平台,研究各层材料之间的相互影响,提出基于“折线法”的多涂层厚度检测方法。并对不同检测参数(激励信号、激励线圈尺寸、检测部件、被测试件电导率)的影响进行实验研究,从而得到适用于“折线法”检测多涂层厚度的最优检测条件。(3)根据(2)中实验研究结果,对基体上单涂层、双涂层、三涂层以及未知电导率下单涂层的厚度进行测量,结合实际检测条件以及误差分析,对检测系统进行优化处理。通过以上实验研究,结合优化完善以后的实验检测系统,验证了“折线法”在精确检测多涂层厚度方面的可行性。

2018-10-24

齿轮裂纹故障仿真计算与诊断

【摘要】提出了一种利用仿真信号对齿轮裂纹故障进行诊断的方法。从齿轮的单自由度振动模型出发, 将裂纹故障等效为模型中轮齿刚度的削减, 运用差分算法对模型进行求解, 得到齿轮的振动位移、速度以及加速度响应, 利用傅立叶变换和双谱分析对仿真结果进行处理, 成功地提取了齿轮裂纹的故障信息。

2018-09-05

基于奇异值分解和深度信度网络多分类器的滚动轴承故障诊断方法

摘 要:提出一种基于奇异值分解(SVD)和深度信度网络(DBN)多分类器的滚动轴承故障诊断方法.对滚动轴承的振动信号进行相空间重构,得到相应的特征矩阵;对特征矩阵进行SVD分解,并 用所得整个奇异值序列构造特征向量,建立DBN 多分类器模型,以实现滚动轴承的故障诊断;同 时,将所提出的方法与DBN、反向传播神经网络、支持向量机等算法进行对比.结果表明,所提出的 方法能够更加稳定、可靠地识别滚动轴承的故障类型和故障程度.

2018-09-05

[MATAB神经网络30个案例分析].史峰.pdf

本书共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,本书还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。 本书可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。 一 BP神经网络实现不使用MATLAB神经网络工具箱 问题 分析 MATLAB实现代码 运行结果 绘制的图像 二 使用MATLAB的神经网络工具箱简易实现BP网络 问题 分析 工具箱中的相关函数一些参考了MATLAB自带的英文手册 mapminmax函数 newff函数新版本 关于nettrainParam的常用属性 train函数 sim函数 MATLAB实现代码 运行结果 绘制的图像

2018-08-24

Java基础教学汇总最新2018

2018最新大学基础教程,包含对应的代码、ppt。对于刚刚上学的大学生和高中生是一个很好入门的材料。

2018-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除