分解例题_这道初中数学题并不难,但很多学生束手无策,关键是因式分解变形...

本文介绍了一种针对特定类型的两位数相乘的速算法则,即当两个乘数的十位数字相同且个位数字之和为10时,可以通过将十位数字与加1后的和相乘得到结果的前两位,个位数字相乘得到结果的后两位。通过举例和代数解释,展示了如何利用因式分解来理解和应用这一速算技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位朋友,大家好!今天是2020年3月25日星期三,祝大家生活愉快!近段时间,数学世界将不定期发布一些小学数学和初中数学的习题及解析,希望对广大学生的备考有帮助,请朋友们密切关注!

今天,数学世界为大家分享一道初中解答题,此题是有关因式分解的应用。此题的难度并不大,如果学生能够很好地掌握因式分解的知识点,就能比较轻松完成此题。请大家先尝试独立思考一会儿,再看下面的分析和解答过程,相信一定会有收获!

因式分解是研究代数式的基础,通过因式分解将多项式合理变形,是求代数式值的常用解题方法,具体做法是:根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入。在用因式分解的方法将式子变形时,根据已知条件,变形的部分可以是整个代数式,也可以是其中的一部分。

例题:(初中数学解答题·因式分解)观察下列两位数(十位数字相同,个位数字的和是10)相乘的等式:

11×19=209;22×28=616;34×36=1224;47×43=2021;55×55=3025;…

我们发现了一个速算法则:两个两位数相乘,如果这两个乘数的十位数字相同,个位数字的和是10,该类乘法的速算方法是:将其中一个乘数的十位数字与另一个乘数的十位数字加1的和相乘,所得的积作为计算结果的前两位(即千位和百位,数位不足两位的,千位看作0);再将两个乘数的个位数字相乘,所得的积作为计算结果的后两位。如:计算71×79,它们乘积的前两位是7×(7+1)=56,它们乘积的后两位是1×9=09,所以71×79=5609.请解答下列问题:

(1)计算:72×78=( );

(2)若设其中一个乘数的十位数字为a,个位数字是b(a,b表示1到9的整数).请通过计算解释以上的速算法则.

bd4b06100923c001a6ccf83b14ae7837.png

不少同学在看完这道题后,感觉头晕脑胀,并不是因为太难,而是文字太多。很多同学都有不仔细读题的坏习惯,所以很容易做错这道题。解答此题的关键是能够明白此题考的就是因式分解的应用。下面,猫哥就与大家一起来解决这道例题吧!

分析:(1)直接根据例子,就可以计算出72×78的值;(2)根据题意,可以用含a、b的代数式表示出符合条件的两个数,然后计算它们的乘积,再局部因式分解,即可得到速算法则。

解:(1)由题意,得

7×(7+1)=7×8=56,2×8=16,

所以72×78=5616,

故答案为:5616;

(2)根据题意,其中一个乘数为10a+b,

则另一乘数可表示为10a+(10-b),

它们乘积为(10a+b)[10a+(10-b)]

=100a^2+10a(10-b)+10ab+b(10-b)

=100a^2+100a+b(10-b)

=100a(a+1)+b(10-b)

即(10a+b)[10a+(10-b)]

=100a(a+1)+b(10-b)

综上,两位数10a+b与10a+(10-b)的十位数字都为a,个位数字b与(10-b)之和为10,

乘积结果的前两位为a(a+1),后两位为b(10-b),符合速算法则.

(完毕)

温馨提示:朋友们如果有不明白之处或者有更好的解题方法,欢迎大家在下面留言讨论。谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值