转眼春招就快到啦!
小伙伴们是不是在为了进大厂
在紧锣密鼓的准备中呀!
网易、字节跳动、美团
各种大厂实习都已经开始啦
有没有一点点心动?
这不 !
今天DAC君又给您带来的干货啦
各种大厂的秋招面经!
小伙伴们请收好哦!
职位选择的重要性
1. 职位的选择要视公司内部的体系而定。具体来说就是,实习招聘优先级最高,其次是部门招聘,最后是集团招聘。
2. 职位空缺的苗头一旦出现,就一定要早早的抢占先机发送简历,可以利用面试来训练自己,同时量力而行也很重要。
3. 自身的经历和所应聘的岗位匹配度一定要高。
面试时重要的基本素质
自身的思维广度
以前的项目经验
与人沟通的能力
各大公司面经
1. 微软探星夏令营:
微软公司的招聘一般分三个部分,包括有:实习生,夏令营和校招。
微软的校招一般比较晚,通常在十一月底开始进行。如果童鞋们想进微软公司,但是不想单单只去实习的话,DAC君建议可以去参加夏令营的项目。
笔试部分
由于是hihocoder内推的,所以笔试被免掉了。通常笔试部分也会在hihocoder上进行,所以如果不是被内推的童鞋,笔试部分也要好好的准备一下哦。
面试部分
面试方面一般是两轮视频面试和三轮现场面试。
视频一面
程序题:
迷宫题,深搜广搜题
设计题, 输入法关键词生成emoji表情
聊聊c++相关
虚函数
一个类对象会不会有两个虚函数表指针
类类型转换 dynamic_cast,static_cast等等
c++新特性
视频二面
程序题:
树的非递归遍历实现
一些业界的认识,比如机器学习的出发点,意义,影响,作用等等
网络相关编程,TCP,UDP,握手协议,拥塞
现场一面
项目相关,面试官做图形学的,对项目十分感兴趣。
二分查找代码
现场二面
最近公共祖先:
接口定制,要求根据接口做实现
接口 TreeNode LCA(TreeNode rt, int i,int j)
二面更多的是考察自身的调查能力,比如是否可以听明白需求?是否可以实现需求对应的功能?是否有效进行沟通?等等
现场三面
面试题目:
求一个点集的凸包,但是不能使用计算几何学的知识
三面的面试官是微软的主管,主题是考察面试者的数学思维能力。
2. 拼多多
参加完微软公司的面试后,就直接赶赴上海参加拼多多的面试。拼多多的面试主要包括:两轮技术面试和一轮HR面试。
技术一面
技术一面主要考察应聘者思维的广度,回答问题是要注意语言的简洁明了,不宜进行长篇大论的赘述:
基础题:
分类算法的理解
决策树的原理
支持向量机
逻辑斯蒂回归
聚类算法的理解
均值聚类,可选的参数,如果确定聚类个数
聚类和分类的异同,举例说明
特征选择算法的理解
集成提升的理解
xgboost
gbdt
代码题:
给一堆区间[a,b]集合,输出区间并之和的结果。例如 输入[2,5],[4,8] ,[9,10],[10,11],输出[2,8], [9,11]
点排序+线扫描解决
设计题:
大文件中查找某个数
技术二面
对项目进行介绍,探讨此项目的细节
基础题:
机器学习相关框架
神经网络、LR模型 目标、导数推导
代码题:
快速排序
3. 今日头条
今日头条的面试一共有五面,前面三轮面试是基础面,后面参加了两轮追加面试。第一场追加面试自我感觉面的比较一般,但是之后HR通知通过,后来九月底又参加了第二场追加面试,二面的感觉不是很好,不过HR还没有通知结果。
现场一面
第一次面试主要考察应聘者的代码功底。
算法题:
一棵树上路径和为固定值的那些路径
归并排序
语言相关基础:
封装、继承、多态
c++和c的区别,和现有更高级语言的区别
现场二面
第二面主要考察应聘者对于机器学习相关的知识的了解。
具体项目介绍,并进行深入讨论
对项目中一些细节模块的选取进行考虑,并询问为什么要这么做,是否有其他选择和做法吗?在性能和精度上,是否能有别的可能等等问题。
现场三面
三面也算是考察应聘者对代码的了解程度。
基础题:
二分查找
无重复元素的二分查找
含重复元素的二分查找
找第k大数
快排实现、堆实现
进阶题:
不用额外空间,尽可能快的找到第k大数
现场四面
参加完第三轮现场面试后,被通知第二天进行加面,这场加面主要考察业务能力,全程基本是应聘者在讲,面试官很少进行提问。
项目相关:
有什么商业价值
cv相关的一些认识
代码题:
用c语言实现一个外部排序的程序,看到要实现外部排序,半小时时间进行书写。
现场五面
九月底今日头条再次打电话要求再次进行加面,这算是第二次参加今日头条的加面了。面试问题大多比较难,面试官是个技术大牛,了解的知识很多也很深,如果基础不扎实,这面就要好好准备了。
面试主要分4个方面
数据结构算法:
一些数字,如25341,删掉其中的k个位,得到最大的数。例如,25341删一个数,有 5341,2534等等,取其中的最大值。
系统设计:
大规模数据优化 1. 大数据下寻找数字异或和位数小于5的数字集合, 没做过优化这块,讨论了半天没给出面试官满意的答案。
机器学习相关:
损失及对应推导,logistic regression 标签-1和1情况下的目标,和0 1的区别(不能简单把标签做转换,两者应该有本质上的区别,这部分没有答好),导数推导这部分写的比较混乱。
梯度消失:
激活函数,饱和性质,饱和区间在哪段?有什么影响?提到激活单元可正可负会提升迭代效果,举了tanh和sigmoid的例子说明zigzag状况,面试官表示tanh是2sigmoid的两倍,不会有这个问题,并且延伸出几个相关问题。
4. 内推-百度运维部
这次的百度面试运维部是师兄内推的,运维部总共就面了一面技术,现在还在内推流程中。因为百度的面试官都在忙校招面试,所以二面的时间暂时还不能确定。
技术一面
项目介绍:
各个子模块选取的依据,必要性,效果等等
代码题:
一颗树,从右往左看,能看到的序列是什么?
细节探讨,为什么用全部变量,不用局部变量?等等
介绍一个熟悉的模型,从原理、目标、更新迭代,性能等等方面阐述。
5. 内推-百度系统部
百度系统部的面试体验不太好,可能这次面的岗位是核心网络工程师,与自身的经历不是很匹配。所以还是要着重强调一下,所面试的岗位最好与自身的实际经历相匹配。
技术一面
技术一面主要以研发为主,面试的问题都是围绕研发展开的。
基础题:
编程语言
c++的多态
红黑树底层实现
qsort函数实现
static类型
变量链接性
网络
TCP三次握手,四次分手流程
网络结构,某些协议在哪个层
操作系统
多线程编程, 这个不会,答不上来
一些linux小工具
编程
用rand5生成rand7, 要求等概率
设计题:
如果捕捉网络包中的异常包,异常检测这一块的应用。
技术二面
技术二面的面试官工作比较繁忙,在没有任何通知的情况下,就被放了两次鸽子。本来约定早上十点钟进行面试,到达指定地点后也没有来电话通知,在目的地等了半小时后,打电话询问了HR,得到答复说面试时间改到下午两点。
基础题:
项目介绍,细节分析
聚类在大数据下的加速优化
三角不等式
kd 树
面试时长大约25分钟。
6. 百度校招
百度校招的面试一共三面,两轮技术面试,一轮经理面试。
技术一面
第一轮技术面试的面试官不太注意细节,只要回答的思路正确即可,基本上询问的问题都很广。
代码题:
二分查找
树的子结构查找
两个链表交点查找
项目介绍:
对时间序列预测算法理解
评估模型性能的方法
ROC,AUC
假设检验
会什么聚类算法?还有其他的聚类算法?
传统的图像处理技术,如形态学。
技术二面
第二轮技术面试比较生活化,与面试官聊了聊本科研究生上的学校,也聊了聊参加过的项目。
LR,FM,GBDT三个算法的介绍,写出更新公式。
代码题:
思路一:动态规划求解
思路二:二分长度,搜索字符串
寻找串str中出现频率超过两次的子串。
字符串中的空格删除,规则是:空格两边是同类型的符号就删除,异类型就保留
以及得到了什么offer
经理面试
对自己参加过的项目进行了一些介绍
详细介绍了自己对未来的职场规划
现在拿到了什么offer
对百度公司的看法和想要进什么部门?等等
面试官也顺便介绍了一下他的部门
7. 滴滴
滴滴公司的面试一共三面,三轮技术面试和一轮HR面试。
技术一面
项目介绍
代码:二分查找
技术二面
项目介绍
代码:迷宫搜索题
技术三面
项目介绍:
SVM线性可分,对于N100和 N1000的样本来说,哪个的支持向量多?
四层神经网络,初始化权重为0,会导致什么情况?(公式说明)
L1,L2范式的不同?L1为什么有稀疏性?证明。
8. 美团
美团公司的面试一共四面,三轮技术面试和一轮HR面试。大概的面试内容是基础知识问答,美团反馈效率很高,面试完没几天就给结果了。
技术一面
项目介绍
代码:树的后序遍历
技术二面
项目介绍:
word2vec详细解释
gbdt的原理
代码题:
小于N的素数个数(用素数计数原理,Euler筛,分块筛解)
技术三面
这一面就是设计面,给你一个场景,去设计一个推荐系统,全程没有什么提示,就是应聘者给思路,面试官点评。
看了那么多面试经验的大家
是不是都感觉要进大厂工作不容易呀!
确实是这样
要达到进大厂的标准
不仅仅只需要软实力
还需要硬实力的!
如果大家想同时提升自己的软硬实力
欢迎来找全能的Tina!
并且,我们福利多多优惠多多哦!
Tina,曾多次帮助学生拿过国内外大厂公司的offer,
有着丰富的职业指导和简历撰写等辅导经验。
点个在看
持续为你提供更多求职干货