zigzag算法_面经| 各大厂秋招算法工程师面经!你想了解的都在这里!

f4888b18e2e12e21d6c05fd532715515.gif

转眼春招就快到啦!

小伙伴们是不是在为了进大厂

在紧锣密鼓的准备中呀!

网易、字节跳动、美团

各种大厂实习都已经开始啦

有没有一点点心动?

7759352693796f8fa279fa94efd762de.gif

这不 !

今天DAC君又给您带来的干货啦

各种大厂的秋招面经

小伙伴们请收好哦!

816959fa2871bf440aad77a2f70992d4.png 429cca91b16b664bbf1d138eb87c7670.gif

职位选择的重要性

1. 职位的选择要视公司内部的体系而定。具体来说就是,实习招聘优先级最高,其次是部门招聘,最后是集团招聘。

2. 职位空缺的苗头一旦出现,就一定要早早的抢占先机发送简历,可以利用面试来训练自己,同时量力而行也很重要。

3. 自身的经历和所应聘的岗位匹配度一定要高。

429cca91b16b664bbf1d138eb87c7670.gif

面试时重要的基本素质

自身的思维广度

以前的项目经验

与人通的能力

429cca91b16b664bbf1d138eb87c7670.gif

各大公司面经

929b45ba9a5ed61578bd577ac8c77dc5.png

1. 微软探星夏令营:

c1ade8561de10e0f915becb7c3ef8d57.png d01c71d3447fbf8beca3adb47f6d4af4.png

微软公司的招聘一般分三个部分,包括有:实习生,夏令营和校招。

微软的校招一般比较晚,通常在十一月底开始进行。如果童鞋们想进微软公司,但是不想单单只去实习的话,DAC君建议可以去参加夏令营的项目。

笔试部分

由于是hihocoder内推的,所以笔试被免掉了。通常笔试部分也会在hihocoder上进行,所以如果不是被内推的童鞋,笔试部分也要好好的准备一下哦。

面试部分

面试方面一般是两轮视频面试和三轮现场面试。

视频一面

程序题: 

迷宫题,深搜广搜题

设计题, 输入法关键词生成emoji表情

聊聊c++相关

虚函数

一个类对象会不会有两个虚函数表指针

类类型转换 dynamic_cast,static_cast等等

c++新特性

视频二面

程序题:

树的非递归遍历实现

一些业界的认识,比如机器学习的出发点,意义,影响,作用等等

网络相关编程,TCP,UDP,握手协议,拥塞

现场一面

项目相关,面试官做图形学的,对项目十分感兴趣。

二分查找代码

现场二面

最近公共祖先: 

接口定制,要求根据接口做实现

接口 TreeNode LCA(TreeNode rt, int i,int j)

二面更多的是考察自身的调查能力,比如是否可以听明白需求?是否可以实现需求对应的功能?是否有效进行沟通?等等

现场三面

面试题目:

求一个点集的凸包,但是不能使用计算几何学的知识

三面的面试官是微软的主管,主题是考察面试者的数学思维能力。

929b45ba9a5ed61578bd577ac8c77dc5.png

2. 拼多多

c1ade8561de10e0f915becb7c3ef8d57.png

a61aad9ddd75ab714cbd86c7b6641a27.png

参加完微软公司的面试后,就直接赶赴上海参加拼多多的面试。拼多多的面试主要包括:两轮技术面试和一轮HR面试。

技术一面

技术一面主要考察应聘者思维的广度,回答问题是要注意语言的简洁明了,不宜进行长篇大论的赘述:

基础题:

分类算法的理解

决策树的原理

支持向量机

逻辑斯蒂回归

聚类算法的理解

均值聚类,可选的参数,如果确定聚类个数

聚类和分类的异同,举例说明

特征选择算法的理解

集成提升的理解

xgboost

gbdt

代码题:

给一堆区间[a,b]集合,输出区间并之和的结果。例如 输入[2,5],[4,8] ,[9,10],[10,11],输出[2,8], [9,11]

点排序+线扫描解决

设计题:

大文件中查找某个数

技术二面

对项目进行介绍,探讨此项目的细节

基础题:

机器学习相关框架

神经网络、LR模型 目标、导数推导

代码题: 

快速排序

929b45ba9a5ed61578bd577ac8c77dc5.png

3. 今日头条

c1ade8561de10e0f915becb7c3ef8d57.png 863ec723bde4f7df7d3020e99697c1a8.png

今日头条的面试一共有五面,前面三轮面试是基础面,后面参加了两轮追加面试。第一场追加面试自我感觉面的比较一般,但是之后HR通知通过,后来九月底又参加了第二场追加面试,二面的感觉不是很好,不过HR还没有通知结果。

现场一面

第一次面试主要考察应聘者的代码功底。

算法题:

一棵树上路径和为固定值的那些路径

归并排序

语言相关基础:

封装、继承、多态

c++和c的区别,和现有更高级语言的区别

现场二面

第二面主要考察应聘者对于机器学习相关的知识的了解。

具体项目介绍,并进行深入讨论

对项目中一些细节模块的选取进行考虑,并询问为什么要这么做,是否有其他选择和做法吗?在性能和精度上,是否能有别的可能等等问题。

现场三面

三面也算是考察应聘者对代码的了解程度。

基础题:

二分查找

无重复元素的二分查找

含重复元素的二分查找

找第k大数

快排实现、堆实现

进阶题:

不用额外空间,尽可能快的找到第k大数

现场四面

参加完第三轮现场面试后,被通知第二天进行加面,这场加面主要考察业务能力,全程基本是应聘者在讲,面试官很少进行提问。

项目相关:

有什么商业价值

cv相关的一些认识

代码题: 

用c语言实现一个外部排序的程序,看到要实现外部排序,半小时时间进行书写。

现场五面

九月底今日头条再次打电话要求再次进行加面,这算是第二次参加今日头条的加面了。面试问题大多比较难,面试官是个技术大牛,了解的知识很多也很深,如果基础不扎实,这面就要好好准备了。

面试主要分4个方面

数据结构算法:

一些数字,如25341,删掉其中的k个位,得到最大的数。例如,25341删一个数,有 5341,2534等等,取其中的最大值。

系统设计:

大规模数据优化 1. 大数据下寻找数字异或和位数小于5的数字集合, 没做过优化这块,讨论了半天没给出面试官满意的答案。

机器学习相关:

损失及对应推导,logistic regression 标签-1和1情况下的目标,和0 1的区别(不能简单把标签做转换,两者应该有本质上的区别,这部分没有答好),导数推导这部分写的比较混乱。

梯度消失:

激活函数,饱和性质,饱和区间在哪段?有什么影响?提到激活单元可正可负会提升迭代效果,举了tanh和sigmoid的例子说明zigzag状况,面试官表示tanh是2sigmoid的两倍,不会有这个问题,并且延伸出几个相关问题。

929b45ba9a5ed61578bd577ac8c77dc5.png

4. 内推-百度运维部

c1ade8561de10e0f915becb7c3ef8d57.png ae0754c81575de4cad493b19c9d3d31e.png

这次的百度面试运维部是师兄内推的,运维部总共就面了一面技术,现在还在内推流程中。因为百度的面试官都在忙校招面试,所以二面的时间暂时还不能确定。

技术一面

项目介绍:

各个子模块选取的依据,必要性,效果等等

代码题:

一颗树,从右往左看,能看到的序列是什么?

细节探讨,为什么用全部变量,不用局部变量?等等

介绍一个熟悉的模型,从原理、目标、更新迭代,性能等等方面阐述。

929b45ba9a5ed61578bd577ac8c77dc5.png

5. 内推-百度系统部

c1ade8561de10e0f915becb7c3ef8d57.png 3a7127ed6bb0c7046e1cd85909b37199.png

百度系统部的面试体验不太好,可能这次面的岗位是核心网络工程师,与自身的经历不是很匹配。所以还是要着重强调一下,所面试的岗位最好与自身的实际经历相匹配。

技术一面

技术一面主要以研发为主,面试的问题都是围绕研发展开的。

基础题:

编程语言

c++的多态

红黑树底层实现

qsort函数实现

static类型

变量链接性

网络

TCP三次握手,四次分手流程

网络结构,某些协议在哪个层

操作系统

多线程编程, 这个不会,答不上来

一些linux小工具

编程

用rand5生成rand7, 要求等概率

设计题:

如果捕捉网络包中的异常包,异常检测这一块的应用。

技术二面

技术二面的面试官工作比较繁忙,在没有任何通知的情况下,就被放了两次鸽子。本来约定早上十点钟进行面试,到达指定地点后也没有来电话通知,在目的地等了半小时后,打电话询问了HR,得到答复说面试时间改到下午两点。

基础题:

项目介绍,细节分析

聚类在大数据下的加速优化

三角不等式

kd 树

面试时长大约25分钟。

929b45ba9a5ed61578bd577ac8c77dc5.png

6. 百度校招

c1ade8561de10e0f915becb7c3ef8d57.png 64a8aea04f8e6b2c6741c54a57a4d902.png

百度校招的面试一共三面,两轮技术面试,一轮经理面试。

技术一面

第一轮技术面试的面试官不太注意细节,只要回答的思路正确即可,基本上询问的问题都很广。

代码题:

二分查找

树的子结构查找

两个链表交点查找

项目介绍:

对时间序列预测算法理解

评估模型性能的方法

ROC,AUC

假设检验

会什么聚类算法?还有其他的聚类算法?

传统的图像处理技术,如形态学。

技术二面

第二轮技术面试比较生活化,与面试官聊了聊本科研究生上的学校,也聊了聊参加过的项目。

LR,FM,GBDT三个算法的介绍,写出更新公式。

代码题:

思路一:动态规划求解

思路二:二分长度,搜索字符串

寻找串str中出现频率超过两次的子串。

字符串中的空格删除,规则是:空格两边是同类型的符号就删除,异类型就保留

以及得到了什么offer

经理面试

对自己参加过的项目进行了一些介绍

详细介绍了自己对未来的职场规划

现在拿到了什么offer

对百度公司的看法和想要进什么部门?等等

面试官也顺便介绍了一下他的部门

929b45ba9a5ed61578bd577ac8c77dc5.png

7. 滴滴

c1ade8561de10e0f915becb7c3ef8d57.png 2d2704b15e1577ceccb8425bc35bd28c.png

滴滴公司的面试一共三面,三轮技术面试和一轮HR面试。

技术一面

项目介绍

代码:二分查找

技术二面

项目介绍

代码:迷宫搜索题

技术三面

项目介绍:

SVM线性可分,对于N100和 N1000的样本来说,哪个的支持向量多?

四层神经网络,初始化权重为0,会导致什么情况?(公式说明)

L1,L2范式的不同?L1为什么有稀疏性?证明。

929b45ba9a5ed61578bd577ac8c77dc5.png

8. 美团

c1ade8561de10e0f915becb7c3ef8d57.png b253e38d1d0b4465611121f2e5a61701.png

美团公司的面试一共四面,三轮技术面试和一轮HR面试。大概的面试内容是基础知识问答,美团反馈效率很高,面试完没几天就给结果了。

技术一面

项目介绍

代码:树的后序遍历

技术二面

项目介绍:

word2vec详细解释

gbdt的原理

代码题:

小于N的素数个数(用素数计数原理,Euler筛,分块筛解)

技术三面

这一面就是设计面,给你一个场景,去设计一个推荐系统,全程没有什么提示,就是应聘者给思路,面试官点评。

看了那么多面试经验的大家

是不是都感觉要进大厂工作不容易呀!

确实是这样

要达到进大厂的标准

不仅仅只需要软实力

还需要硬实力的!

如果大家想同时提升自己的软硬实力

欢迎来找全能的Tina

并且,我们福利多多优惠多多哦!

57ced88c30a7bb9e297ca4985b37fc6d.png

Tina,曾多次帮助学生拿过国内外大厂公司的offer,

有着丰富的职业指导和简历撰写等辅导经验。

374d0a4acc9cb75e43a42458a29bf5bb.png

点个在看

持续为你提供更多求职干货

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值