pso神经网络用python_python - 如何通过PSO优化的神经网络代码使用不同的损失函数? - 堆栈内存溢出...

本文档展示了如何使用Python库pyswarms的粒子群优化(PSO)来优化神经网络。作者提供了前向传播函数,用于计算神经网络的损失,并在最后遇到了在计算softmax后的损失时出现的维度错误。示例代码中,神经网络包含一个输入层和一个输出层,使用sigmoid激活函数。问题在于尝试在只有一个维度的数组上应用axis=1的操作,导致了错误。此外,讨论了如何将这种优化方法与其他损失函数结合使用。
摘要由CSDN通过智能技术生成

我正在使用pyswarms PSO进行神经网络优化。 我正在尝试创建输入层和输出层的网络。

# Store the features as X and the labels as y

X = np.random.randn(25000,20)

y = np.random.random_integers(0,2,25000)

# In[29]:

def sigmoid(x):

return 1 / (1 + math.exp(-x))

# In[58]:

print(X_train.shape)

print(y_train.shape)

# In[63]:

# Forward propagation

def forward_prop(params):

"""Forward propagation as objective function

This computes for the forward propagation of the neural network, as

well as the loss. It receives a set of parameters that must be

rolled-back into the corresponding weights and biases.

Inputs

------

params: np.ndarray

The dimensions should include an unrolled version of the

weights and biases.

Returns

-------

float

The computed negative lo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值