anaconda tensorflow 2.3_TensorFlow 速成 | 统计师的Python日记 第13天

4268d39c749b9d53d8efe61e7e891ff7.png

本文是【统计师的Python日记】第13天的日记

回顾一下:

  • 第1天学习了Python的基本页面、操作,以及几种主要的容器类型。
  • 第2天学习了python的函数、循环和条件、类。
  • 第3天了解了Numpy这个工具库。
  • 第4、5两天掌握了Pandas这个库的基本用法。
  • 第6天学习了数据的合并堆叠。
  • 第7天开始学习数据清洗,着手学会了重复值删除、异常值处理、替换、创建哑变量等技能。
  • 第8天接着学习数据清洗,一些常见的数据处理技巧,如分列、去除空白等被我一一攻破。
  • 第9天学习了正则表达式处理文本数据。
  • 第10天学习了数据的聚合操作、数据透视表pivot_table()方法、交叉表crosstab。
  • 第11天学习了class类的概念以及如何写一个类。链接:Class 类—Python老司机的必修课
  • 第12天学习了机器学习库 sklearn,并用这个工具完整建了一个模型。链接:一把 sklearn 走天下 | 统计师的Python日记 第12天

(历史文章因为之前在其他平台上发表,所以头条这里发布有些问题,后续会在搬过来)

今天将带来第13天的学习日记,开始学习 TensorFlow,介绍的版本是1.X。本文先认识一下 TensorFlow 的建模流程,学习搭建一个 logistic 回归,再用 TensorFlow 跑一个深度神经网络。

目录如下:

前言

一、Windows 下 Tensorflow 快速安装

二、初识 Tensorflow

三、学习:Tensorflow 搭建 logistic 回归

四、练习:用 tensorflow 跑一个深度神经网络

五、TensorFlow高级API:tf.contrib.learn


前言

在12天的日记中,我们有了解过 sklearn 针对传统的机器学习,适合中小型的项目,那种数据量不大、CPU上就可以完成的运算。而 tensorflow 针对深度学习任务,适合数据量较大、一般需要GPU加速的运算。但是自由度比较高,需要自己动手写很多东西。

本文中,我们快速安装一下tensorflow,再简单认识一下tensorflow,再用 tensorflow 跑一个简单的 logistic regression,了解用 tensorflow 建模的基本零件工具。之后,再正式的跑一个神经网络。

(本文所有演示都是 tensorflow 1.X)

一、Windows 下 Tensorflow 快速安装

我们知道正是因为有了 Anaconda+Pycharm, 我们才可以愉快轻松的使用Python 以及它的各种库。使用 Tensorflow 也是一样,经过踩坑尝试,Windows 下最快的安装流程如下:

① 下载安装 Pycharm

② 下载安装 Anaconda3-4.2.0-Windows(对于的Python版本是3.5.x,这个很重要)

③ Pycharm 里的解释器(Interpreter)选择 Anaconda 下的 python.exe

④ Package中安装tensorflow(可以看到还是1.X版)

至此,我们就安装好了 Tensorflow,可以尝试在 Pycharm 中运行:

import tensorflow as tf

注意这里是CPU版本,GPU版本的设置我们后面有机会再介绍,先安装CPU版本学习一下。

二、初识 Tensorflow

在各种资料上,我们都看到过类似这样对 tensorflow 的介绍:

6444a27e9bf4b35b7ab4580e30ac6b6a.png

tensorflow 用图的形式来表示运算过程的一种模型,每一个节点都表示数学操作,线将其联系起来,即“张量”(tensor)

这是什么意思呢?在学习logistic模型的时候,我们了解过,构建一个模型需要哪些流程?

dca44c3fce12fbba8c9989ca20f8a3d3.png
  • 定义模型的形式(线性回归/logistic回归......)
  • 建立目标函数(误差最小/似然最大......)
  • 选择优化算法(用怎样的方法使得目标函数达到一个最优值)
  • 优化目标函数,得到最佳参数

在tensorflow的数据流图中,就是要自己去定义这些运算模块,也就是构建 Graph,代码不会生效。之后要启动一个 Session,程序才会真正运行。先简单了解三个概念:

  • graph:计算流图,在图中中定义了一些运算
  • op:操作,graph都是由op组成的
  • session:执行graph,给graph灌入数据,得到结果

我们就用 logistic regression 来学习一下 tensorflow 建模过程和这些概念。

三、学习:Tensorflow 跑 logistic 回归

如下图,一段 Tensorflow 程序我们大概要完成三步:准备数据、定义Graph、执行Session,先大体了解一下:

ae78dd0be066363e12c93ae8122fbb11.png

1、准备数据

1.1 划分数据集 train_test_split()

本文仍采用 iris 数据。首先划分数据集,训练集:测试集=7:3

#划分数据集

X=iris.data

y=iris.target

X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.3,random_state=0)

1.2 处理哑变量 get_dummies()

另外,这个数据的 lable 是多分类的,在上一文中(一把 sklearn 走天下),sklearn 可以自动用 one-vs-rest 的思路进行处理。Tensorflow 需要事先把多分类的处理成哑变量,我们把 y_train 和 y_test 处理成多分类的哑变量:

#哑变量

y_train=pd.get_dummies(y_train)

y_test=pd.get_dummies(y_test)

2、定义 graph

我们要开始对模型框架进行一些定义, 具体来说:

我们先把一个模型中的占位符、变量定义出来,再定义损失函数、进而定义损失函数的优化方法,这基本可以理解为把模型的样子搭好了,

在后面执行session时,再把真实的数据喂给占位符,并执行优化方法,得到最优的参数。

2.1 定义数据占位符 tf.placeholder

placeholder 是占位符,大概意思是一个数据空壳,后期我们要把真实的数据灌进去。

#占位符

x=tf.placeholder(tf.float32,[None,4])

y=tf.placeholder(tf.float32,[None,3])

2.2 定义变量 tf.Variable()

建模的本质就是找到最优的参数,这个参数就是我们要定义的变量。logistic 回归中,由于有四个特征,因此变量是 w1/w2/w3/w4,还有一个常量 bias。

但是,注意这里我们把y不是简单0/1的预测,因为y是3分类的,我们把y处理成了3分类的哑变量,在预测时候,我们需要对3类分别预测,取预测概率最大的结果。

99d7197e9679a31bf4b8ba5917823921.png

因此在本例中,变量有4×3=12个,是一个4×3的矩阵,而且 bias 也不是一个,而是3个,即 3×1 的向量。

变量定义为:

#定义变量

weight=tf.Variable(tf.random_normal([4,3]),dtype=tf.float32)

bias=tf.Variable(tf.constant(0.01, shape=[6]))

我们通过 tf.Variable() 创建 Variable 类的实例,向 graph 中添加变量。我们要在参数中定义好这个 Variable 的形状,用 tf.random_normal() 。

tf.random_normal() 函数是从正态分布中输出随机值。参数形式为:

random_normal(

shape,

mean=0.0,

stddev=1.0,

dtype=tf.float32,

seed=None,

name=None

)

这里shape就是[4,3],因为上面说过,weight 是一个4×3的矩阵。

2.3 定义损失函数和优化方法

这里,我们的损失函数是让y的预测值与真实值的均方误差,优化的目的是让这个损失函数最小:

#定义y的预测值y_pred_sgmd

y_pred=tf.add(tf.matmul(x,weight),bias)

y_pred_sgmd=tf.nn.sigmoid(y_label)

#定义损失函数loss:采用均方误差

loss=tf.reduce_mean(tf.square(y-y_pred_sgmd))

#定义迭代优化方法train:采用梯度下降

train=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

  • tf.matmul(x, weight) 是矩阵x 乘以 矩阵weight。
  • tf.add(tf.matmul(x, weight), bias) 就是再加上bias。
  • tf.square(a) 是对a里每一个元素求平方。
  • reduce_mean() 的形式如下:

reduce_mean(

input_tensor,

axis=None,

keep_dims=False,

name=None,

reduction_indices=None

)

作用是在第一个参数 input_tensor 矩阵中,按照 axis 指定维度求平均,axis不指定,将所有元素加总求平均值,axis=0,求纵轴平均值,=1求横轴平均值。比如:

x = tf.constant([[1., 1.], [2., 2.]])

tf.reduce_mean(x) # (1+1+2+2)/4=1.5

tf.reduce_mean(x, 0) # [(1+2)/2, (1+2)/2]=[1.5, 1.5]

tf.reduce_mean(x, 1) # [(1+1)/2,(2+2)/2]=[1., 2.]

  • tf.train.GradientDescentOptimizer(0.2) 梯度下降优化器,0.2是学习率。minimize(loss) 说明优化的目标是最小化 loss。

3、优化执行

我们要开始真正执行求解了,先灌入训练数据,再执行优化,得到最优模型之后,对测试集上的数据进行预测。

整体代码如下,后面分段解释:

#Session

with tf.Session() as sess:

#下面的code都是在这个sess下面

#变量初始化:给Graph图中的变量初始化

sess.run(tf.global_variables_initializer())

#迭代8000次

for i in range(8000):

sess.run(train, feed_dict={x:X_train,y:y_train})

#每1000次输出一次loss

if (i%1000==0):

print (sess.run(loss,feed_dict={x:X_train,y:y_train}))

#输出最终的参数:weight和bias

print (sess.run(weight), sess.run(bias))

#灌入测试数据

#直接输出3分类的结果

#3分类的原始概率结果

pred_y_3level = sess.run(y_label_sgmd, feed_dict={x: X_test})

print (pred_y_3level)

#选择概率最大的分类

y_argmax=tf.argmax(y_label_sgmd, 1)

y_pred=sess.run(y_argmax, feed_dict={x:X_test})

print (y_pred)

#计算精准、召回、F1 score

y_true=np.argmax(np.array(y_test),1)

print (y_true)

print("Precision

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值