函数对称性常见公式_高中数学:还在为函数对称性周期性而烦恼,试试这种记忆方法...

请记住我们的口号:GoFine数学,重逻辑也重记忆!

今天我们给大家解决的是高中生普遍易混淆的函数对称性周期性表达式问题。

598574bb918dfaf1e8f3cd5805021e65.png

废话不多说,直接上图,这些表达式您能区分多少,请在评论区回答。文末高锋老师会给出答案。

7ae4da5b95eee25cdf1901e2b4f21f7a.png

庞杂的公式

我们的记忆树如下:两句话记忆对称性周期性:

a5bbc3461fa6a907263a4fa38cd12cfa.png

记忆树

一函数型对称性,证明的方法就是记忆方法。解析过程如下:( )内相加为定值指的是(x+a)+(b-x)等于定值a+b,只要判断出这一点,我们就得到这个表达式表示的是对称性。由第一个表达式算出中点坐标,发现中点恒为定值。当x跑完定义域内的所有值,得到f(x)的图像,继而得到图像也关于改点对称。同样第二个表达式一样分析。

6d1122f9788a7109d1f3dab44a865c83.png

一函数型对称性

双函数型对称性,证明过程既是记忆方法。解析过程如下:这个地方为什么不能像一函数中那样加减呢。是因为一函数型中的x是同一个x,双函数中x不一定是同一个x。所以要找出x1+a和b-x2的对应点x0,再带入中点坐标公式。

616fb43757a943e54b87dfcaa36fccff.png

双函数型对称性

双函数型对称性的第二类:

9bea0feb1c1cf964780ddc8dbc6dadab.png

双函数型对称性

下面我们来记一下周期性:

0202b14d52005dfa907bbc16d6c8a62c.png

巧妙地利用笔画记忆,这方法真绝了!

b84c2f5742efffe5b7223418a1021676.png

很巧妙地类比等差数列与等比数列,简单

43d16dd82311e59d11b77c775b2ed621.png

更巧妙地把1+变成4,1-变成2,轻松记住周期,厉害!

188250c96836ae0816353b3617bc4f6b.png

记忆方法同上。

b63397a6f8b8b7daefd83f0023c048ec.png

双对称函数的周期问题

再往下我们给出文首的答案,相信您现在

a86cd0c86a91a35ce0dd323662c93e86.png
280add75ad66b6c472d4edcf4d5683fd.png

最后我们做一个知识汇总,相信您现在也能够轻松得到:

93c72b96da2376108214e0a8aa6f09ef.png

原创不易,如需转发,请注明GoFine数学。

各位同学,如果您喜欢老师的文章,请用您的行动“点赞”“转发”“关注”支持老师,非常感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值