hht时频图三维_非平稳信号HHT分析—线性调频信号分析

本文介绍了线性调频信号(chirp)的特性,指出其非平稳性质使得传统谱分析方法不适用。通过HHT(Hilbert-Huang变换)方法对两个部分重叠频带的chirp信号进行分析,成功分解出真实信号并展示Hilbert谱的高时间-频率分辨率。同时,与STFT、Wigner-Ville分布和小波变换进行对比,揭示了它们在时频分析中的优缺点。

3.1线性调频信号分析

线性调频信号(chirp)信号是一频率随时间呈线性关系连续变化的信号,其在时频谱图上应该为一正比例函数,由于其在各个局部时刻的频率都在变化,且每一时刻都对应着唯一的频率成分,它本身是一个典型的单分量信号也即固有模态函数,是一个非平稳信号,因此傅立叶变换等传统谱分析方法对其无能为力。

我们用HHT分析方法对两个叠加的 chirp 信号进行仿真,第一个chirp信号的起始频率为20Hz,截止频率为370Hz。第二个chirp信号的起始频率为3Hz,截止频率为120Hz。模拟信号的采样频率为2000Hz,可以注意到,这两个chirp信号的频带是部分重叠的,图 3-1 是chirp信号波形及其EMD分解结果。

从分解结果可以看出,一共得到七个 imf 分量,EMD 成功的分解出了两个频带部分重叠的chirp信号,imf1对应着第一个高频的chirp信号,imf2对应着第二个chirp信号。imf3到imf7幅值和频率都非常小,是分解过程中筛选出的虚假分量,并不包含原始信号的频率信息。

对各imf分量求解瞬时频率可以得到信号的时频谱,即Hilbert谱。图 3-2 示出Hilbert谱分析结果,两条斜率不同的直线反映出两个 chirp 信号各自的频率随时间连续变化情况。不仅反映出了信号中的频率范围,还提供信号中具体的局部频率信息,Hilbert谱具有很高的时间与频率分辨率。同时,在低频段出现了无关的频率成分,还有在时频线右端点出现了能量发散的情况,理想中应该是一条直线。前者是由虚假分量造成的,后者是由HHT的端点问题造成的,后面章节我们将针对这两个问题进行讨论,采取适当的方法处理。

7330fd54fe42535f6ea71e00f978fcb5.png

为了与其它时频分析方法进行比较,图 3-2 中也同时给出了STFT变换、Wigner-Ville 分布和小波变换常规方法的时频分析结果。从时频谱来看,这三种方法都能够分析得到组成叠加信号的两个 chirp 分量,STFT变换和小波变换都存在时频分辨率的问题,且在低频段,由于频率比较接近,谱线发生重叠变形的情况,使得分析效果变差;而Wigner-Ville分布虽然两条 chirp 信号的谱线比较清晰,时频分辨率也足够好,但其交叉项的干扰也是比较严重的。

e244e2a43628eea1545d527d3080524f.png

《来源科技文献,经本人分析整理,以技术会友,广交天下朋友》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值