python分布式 集群_利用python的dask搭建分布式集群

一、dask介绍

优势:dask内部自动实现了分布式调度、无需用户自行编写复杂的调度逻辑和程序;通过调用简单的方法就可以进行分布式计算、并支持部分模型的并行化处理;内部实现的分布式算法:xgboost、LR、sklearn的部分方法等

用一句话说:dask就是python版本的spark,是一个用Python 语言实现的分布式计算框架

二、dask安装

1.环境

建议使用:Anaconda3工具包

系统:windows、linux

2.安装

1.conda安装:conda install dask

2.pip 安装:pip install dask

3.source安装:

git clone dask/dask

cd dask

python setup.py install

3.分布式版安装

1.conda安装:conda install dask distributed-cconda-forge

2.pip 安装:pip install dask distributed --upgrade

3.source安装:

git clone https://github.com/dask/distributed.git

cd distributed

python setup.py install

三、dask集群搭建

1.启动主节点(类似注册中心)

本人实验环境:一台windows机器+3台虚拟化linux服务器,并4台机器均已按照上面步骤安装配置dask

选择Windows机器作为主节点,启动命令:

$ dask-scheduler

控制台显示信息如下:

distributed.scheduler - INFO - -----------------------------------------------

distributed.scheduler - INFO - Clear task state

distributed.scheduler - INFO - Scheduler at: tcp://192.168.1.42:8786

distributed.scheduler - INFO - :8787

distributed.scheduler - INFO - Local Directory: C:\Users\User\AppData\Local\Temp\scheduler-gd9uk980

distributed.scheduler - INFO - -----------------------------------------------

2.启动工作节点

在其他每台linux机器命令行输入:

$ dask-worker 192.168.1.42:8786

注意:后面跟的ip和端口是主节点的ip和对应服务的端口

工作节点启动成功后,此时主节点会显示多出信息:

distributed.scheduler - INFO - Register tcp://192.168.1.184:45772

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.184:45772

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register tcp://192.168.1.183:43405

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.183:43405

distributed.core - INFO - Starting established connection

distributed.scheduler - INFO - Register tcp://192.168.1.188:38095

distributed.scheduler - INFO - Starting worker compute stream, tcp://192.168.1.188:38095

distributed.core - INFO - Starting established connection

四、 dask集群使用

1.单机使用示例

"""单机dask"""

import time

from dask.distributed import Client

client = Client(asynchronous=True)

def square(x):

return x ** 2

def neg(x):

return -x

ts = time.time()

A = client.map(square, range(10000))

B = client.map(neg, A)

total = client.submit(sum, B)

print(total.result())

print('cost time :%s'%(time.time()-ts))

cost time :8.507587909698486

2.分布式版使用示例

"""分布式dask"""

import time

from dask.distributed import Client

client = Client('192.168.1.42:8786' ,asynchronous=True)

ts = time.time()

A = client.map(square, range(10000))

B = client.map(neg, A)

total = client.submit(sum, B)

print(total.result())

print('cost time :%s'%(time.time()-ts))

cost time :3.793848991394043

通过官网提供的测试例子可以看出dask的确体现了分布式的优势。

如果您觉得有帮助的话,可以扫码,赞赏鼓励一下!谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值