Ghosts live in harmony and peace, they travel the space without any purpose other than scare whoever stands in their way.
There are nn ghosts in the universe, they move in the OXYOXY plane, each one of them has its own velocity that does not change in time: →V=Vx→i+Vy→jV→=Vxi→+Vyj→ where VxVx is its speed on the xx-axis and VyVy is on the yy-axis.
A ghost ii has experience value EXiEXi, which represent how many ghosts tried to scare him in his past. Two ghosts scare each other if they were in the same cartesian point at a moment of time.
As the ghosts move with constant speed, after some moment of time there will be no further scaring (what a relief!) and the experience of ghost kind GX=∑ni=1EXiGX=∑i=1nEXi will never increase.
Tameem is a red giant, he took a picture of the cartesian plane at a certain moment of time TT, and magically all the ghosts were aligned on a line of the form y=a⋅x+by=a⋅x+b. You have to compute what will be the experience index of the ghost kind GXGX in the indefinite future, this is your task for today.
Note that when Tameem took the picture, GXGX may already be greater than 00, because many ghosts may have scared one another at any moment between [−∞,T][−∞,T].
The first line contains three integers nn, aa and bb (1≤n≤2000001≤n≤200000, 1≤|a|≤1091≤|a|≤109, 0≤|b|≤1090≤|b|≤109) — the number of ghosts in the universe and the parameters of the straight line.
Each of the next nn lines contains three integers xixi, VxiVxi, VyiVyi (−109≤xi≤109−109≤xi≤109, −109≤Vxi,Vyi≤109−109≤Vxi,Vyi≤109), where xixi is the current xx-coordinate of the ii-th ghost (and yi=a⋅xi+byi=a⋅xi+b).
It is guaranteed that no two ghosts share the same initial position, in other words, it is guaranteed that for all (i,j)(i,j) xi≠xjxi≠xj for i≠ji≠j.
Output one line: experience index of the ghost kind GXGX in the indefinite future.
4 1 1 1 -1 -1 2 1 1 3 1 1 4 -1 -1
8
3 1 0 -1 1 0 0 0 -1 1 -1 -2
6
3 1 0 0 0 0 1 0 0 2 0 0
0
There are four collisions (1,2,T−0.5)(1,2,T−0.5), (1,3,T−1)(1,3,T−1), (2,4,T+1)(2,4,T+1), (3,4,T+0.5)(3,4,T+0.5), where (u,v,t)(u,v,t) means a collision happened between ghosts uu and vv at moment tt. At each collision, each ghost gained one experience point, this means that GX=4⋅2=8GX=4⋅2=8.
In the second test, all points will collide when t=T+1t=T+1.
The red arrow represents the 1-st ghost velocity, orange represents the 2-nd ghost velocity, and blue represents the 3-rd ghost velocity.
题目:给定一条直线上的n个点,给你他们的速度以及速度方向,n个点在某一时刻相遇,求人数的二倍。。。
分析:两个点在时刻T的情况下的条件是它们有相同的X坐标和相同的Y坐标。
同时到达x坐标 X0i+VxiTx=X0j+VxjTx
所以得出:Tx=(X0i−X0j)/(Vxj−Vxi)
同时到达坐标 : Ty=(aX0i−aX0j+b−b)/(Vyj−Vyi)Ty=(aX0i−aX0j+b−b)/(Vyj−Vyi)
为了达到 Ty=TxTy=Tx 所以一下公式成立:
(X0i−X0j)/(Vxj−Vxi)=(aX0i−aX0j+b−b)/(Vyj−Vyi)(X0i−X0j)/(Vxj−Vxi)=(aX0i−aX0j+b−b)/(Vyj−Vyi)
化简: 1/(Vxj−Vxi)=a/(Vyj−Vyi)1/(Vxj−Vxi)=a/(Vyj−Vyi)
最后化简:aVxj−Vyj=aVxi−VyiaVxj−Vyj=aVxi−Vyi
意思就是,所有a*vx - vy有相同值得点,除非他们平行,否则就会碰撞;
所以问题就是求这样点的个数,注意平行问题。。。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 2e5+7;
ll a, b, vx, vy, x;
int n;
map<ll, ll> m;
map< pair<ll, ll>, ll> p;
int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d%lld%lld", &n, &a,&b))
{
ll ans = 0;
for(int i = 0; i < n ;i++) {
scanf("%lld%lld%lld", &x, &vx, &vy);
ans += (m[a*vx - vy] - p[{vx, vy}]); //七点不同但相等的向量。。。
m[a*vx - vy] ++;
p[{vx, vy}] ++;
}
printf("%lld\n", ans*2);
}
return 0;
}