1146. Maximum Sum
Time limit: 0.5 second
Memory limit: 64 MB
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the
maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1 × 1 or greater located within the whole array.
As an example, the maximal sub-rectangle of the array:
is in the lower-left-hand corner and has the sum of 15.
Input
The input consists of an
N ×
N array of integers. The input begins with a single positive integer
N on a line by itself indicating the size of the square two dimensional array. This is followed by
N
2 integers separated by white-space (newlines and spaces). These
N
2 integers make up the array in row-major order (i.e., all numbers on the first row, left-to-right, then all numbers on the second row, left-to-right, etc.).
N may be as large as 100. The numbers in the array will be in the range [−127, 127].
Output
The output is the sum of the maximal sub-rectangle.
Sample
|
© 2000–2017 Timus Online Judge Team. All rights reserved.
求最大子矩阵和,直接枚举四个端点时间复杂度有点大,所以转换成最大字段和,
sum[i][j]保存第i行第j列中前j个的和。。。。
枚举上下行r1,r2,然后就是求最大字段和啦。。。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e2+7;
int n, m[maxn][maxn], sum[maxn][maxn];
void clomn()
{
memset(sum, 0, sizeof(sum));
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
sum[i][j] = sum[i - 1][j] + m[i][j];
}
int solve()
{
clomn();
int ans = -10000;
for(int r1 = 1; r1 <= n; r1++)
for(int r2 = r1; r2 <= n; r2++)
{
int t = 0;
for(int i = 1; i <= n; i++)
{
t += sum[r2][i] - sum[r1 - 1][i];
ans = max(t, ans);
if(t < 0) t = 0;
}
}
return ans;
}
int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d",&n))
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) scanf("%d",&m[i][j]);
printf("%d\n", solve());
}
return 0;
}