python如何从一个dataframe提取相应的行组成一个新的dataframe_从Excel到Python:最常用的36个Pandas函数!最完整的Pandas教程!...

本文详述了使用Pandas进行数据处理的常用函数,涵盖数据生成、检查、清洗、预处理,包括数据导入、空值处理、格式转换、数据分组等,是Python数据操作的实用指南。
摘要由CSDN通过智能技术生成

本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。

生成数据表

常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。

Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。

ed2ad97d-ff0f-eb11-8da9-e4434bdf6706.png

Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入numpy和pandas库

import numpy as np
import pandas as pd

导入外部数据

df=pd.DataFrame(pd.read_csv('name.csv',header=1))
df=pd.DataFrame(pd.read_Excel('name.xlsx'))c

里面有很多可选参数设置,例如列名称、索引列、数据格式等

直接写入数据

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shen
zhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','2
10-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age',
'price'])

f42ad97d-ff0f-eb11-8da9-e4434bdf6706.png

数据表检查

数据表检查的目的是了解数据表的整体情况,获得数据表的关键信息、数据的概况,例如整个数据表的大小、所占空间、数据格式、是否有 空值和重复项和具体的数据内容,为后面的清洗和预处理做好准备。

1.数据维度(行列)

Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键 来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数。

df.shape

2.数据表信息

使用info函数查看数据表的整体信息,包括数据维度、列名称、数据格式和所占空间等信息。#数据表信息

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
id 6 non-null int64
date 6 non-null datetime64[ns]
city 6 non-null object
category 6 non-null object
age 6 non-null int64
price 4 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
memory usage: 368.0+ bytes

3.查看数据格式

Excel中通过选中单元格并查看开始菜单中的数值类型来判断数 据的格式。Python中使用dtypes函数来返回数据格式。

fb2ad97d-ff0f-eb11-8da9-e4434bdf6706.png

Dtypes是一个查看数据格式的函数,可以一次性查看数据表中所 有数据的格式,也可以指定一列来单独查看

#查看数据表各列格式
df.dtypes
id int64
date datetime64[ns]
city object
category object
age int64
price float64
dtype: object
#查看单列格式
df['B'].dtype
dtype('int64')

4.查看空值

Excel中查看空值的方法是使用“定位条件”在“开始”目录下的“查找和选择”目录.

042bd97d-ff0f-eb11-8da9-e4434bdf6706.png

Isnull是Python中检验空值的函数

#检查数据空值
df.isnull()

f42ad97d-ff0f-eb11-8da9-e4434bdf6706.png
#检查特定列空值
df['price'].isnull()

f42ad97d-ff0f-eb11-8da9-e4434bdf6706.png

5.查看唯一值

Excel中查看唯一值的方法是使用“条件格式”对唯一值进行颜色 标记。

f42ad97d-ff0f-eb11-8da9-e4434bdf6706.png

Python中使用unique函数查看唯一值。

#查看city列中的唯一值
df['city'].unique()
array(['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', '
BEIJING '], dtype=object)

6.查看数据表数值

Python中的Values函数用来查看数据表中的数值

#查看数据表的值
df.values

122bd97d-ff0f-eb11-8da9-e4434bdf6706.png

7.查看列名称

Colums函数用来单独查看数据表中的列名称。

#查看列名称
df.columns
Index(['id', 'date', 'city', 'category', 'age', 'price'], dtype='
object')

8.查看前10行数据

Head函数用来查看数据表中的前N行数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值