除夕日,大吉!
今天讲讲关于7、4、8这三个数字的整除问题,
判定法则并不重要,重要的是如何得到这种判定法则。
我们都知道,判断正整数能否被3整除很简单,只需要看各位数字和是否是3的倍数。那么,如何判断正整数能否被7、4、8整除呢?其实这几个问题是一脉相承的,可以用同样的方法解决。
开门见山先说三个结论:
判断能否被4整除的法则是:用十位数的2倍加上个位数,看是否能被4整除。
判断能否被8整除的法则是:百位数乘以4加上十位数乘以2,再加上个位数,看是否能被8整除。
判断能否被7整除的法则是:把这个数从后到前分为每6位一段,对每一段ABCDEF求5A+4B+6C+2D+3E+F,再把所有段的值相加,看结果能否被7整除。
我们从熟知的被3整除开始思考,
被3整除的判定法则是怎么来的?
假设某四位数为ABCD,
则ABCD=1000*A+100*B+10*C+D
=999*A+99*B+9*C+(A+B+C+D)
=3*(333A+33B+3C) +(A+B+C+D),
显然只要A+B+C+D是3的整数倍,
四位数ABCD也是3的整数倍,
反之亦然。
对于任意位数都可以这么处理。
仔细观察上面的证明过程,
关键在于999,99,9都是3的整数倍,
对于7,4,8的情况可以类似证明。
先证明第一个结论,
判断正整数能否被4整除。
假设某正整数最后两位数是AB,
则存在自然数n,
使该正整数等于100n+AB
=100n+10A+B
=100n+8A+2A+B
=4*(25n+2A)+(2A+B)。
显然只要2A+B是4的整数倍,
这个正整数也是4的整数倍,
反之亦然。
因此判断能否被4整除的法则是:
用十位数的2倍加上个位数,
看是否能被4整除。
再证明第二个结论,
判断正整数能否被8整除。
假设某正整数最后三位数是ABC,
则存在自然数n,
使该正整数等于1000n+ABC
=1000n+100A+10B+C
=1000n+96A+8B+4A+2B+C
=8*(125n+12A+B)+(4A+2B+C)。
显然只要4A+2B+C是8的整数倍,
这个正整数也是8的整数倍,
反之亦然。
因此判断能否被8整除的法则是:
百位数乘以4加上十位数乘以2,
再加上个位数,
看是否能被8整除。
再证明第三个结论,
判断正整数能否被7整除。
这个问题比前两个要复杂一点,
假设某六位数是ABCDEF=
=100000A+10000B+1000C+100D+10E+F
=7*(14285A+1428B+142C+14D+E)
+(5A+4B+6C+2D+3E+F)
只要5A+4B+6C+2D+3E+F是7的整数倍,
这个正整数也是7的整数倍,
反之亦然。
注意到1000000除以7的余数是1,
则从1000000m+n除以7的余数,
与m+n除以7的余数相同,
故把任意正整数从后到前每6位分一截,
就可应用上述方法判断是否被7整除。
因此判断能否被7整除的法则是:
把这个数从后到前分为每6位一段,
对每一段求5A+4B+6C+2D+3E+F,
再把所有段的值相加,
看结果能否被7整除。
最后,给朋友们拜年了,祝您春节快乐,身体健康,阖家欢乐。
求整数的位数及各位数字之和_如何判断正整数能否被7、4、8整除?(20年1月24日)...
最新推荐文章于 2021-05-21 07:59:01 发布