求整数的位数及各位数字之和_如何判断正整数能否被7、4、8整除?(20年1月24日)...

fae06246013b2982cf6608433e0361aa.png 除夕日,大吉!   今天讲讲关于7、4、8这三个数字的整除问题, 判定法则并不重要,重要的是如何得到这种判定法则。   我们都知道,判断正整数能否被3整除很简单,只需要看各位数字和是否是3的倍数。那么,如何判断正整数能否被7、4、8整除呢?其实这几个问题是一脉相承的,可以用同样的方法解决。   开门见山先说三个结论: 判断能否被4整除的法则是:用十位数的2倍加上个位数,看是否能被4整除。 判断能否被8整除的法则是:百位数乘以4加上十位数乘以2,再加上个位数,看是否能被8整除。 判断能否被7整除的法则是:把这个数从后到前分为每6位一段,对每一段ABCDEF求5A+4B+6C+2D+3E+F,再把所有段的值相加,看结果能否被7整除。   我们从熟知的被3整除开始思考, 被3整除的判定法则是怎么来的? 假设某四位数为ABCD, 则ABCD=1000*A+100*B+10*C+D =999*A+99*B+9*C+(A+B+C+D) =3*(333A+33B+3C) +(A+B+C+D), 显然只要A+B+C+D是3的整数倍, 四位数ABCD也是3的整数倍, 反之亦然。 对于任意位数都可以这么处理。   仔细观察上面的证明过程, 关键在于999,99,9都是3的整数倍, 对于7,4,8的情况可以类似证明。   先证明第一个结论, 判断正整数能否被4整除。 假设某正整数最后两位数是AB, 则存在自然数n, 使该正整数等于100n+AB =100n+10A+B =100n+8A+2A+B =4*(25n+2A)+(2A+B)。 显然只要2A+B是4的整数倍, 这个正整数也是4的整数倍, 反之亦然。 因此判断能否被4整除的法则是: 用十位数的2倍加上个位数, 看是否能被4整除。   再证明第二个结论, 判断正整数能否被8整除。 假设某正整数最后三位数是ABC, 则存在自然数n, 使该正整数等于1000n+ABC =1000n+100A+10B+C =1000n+96A+8B+4A+2B+C =8*(125n+12A+B)+(4A+2B+C)。 显然只要4A+2B+C是8的整数倍, 这个正整数也是8的整数倍, 反之亦然。 因此判断能否被8整除的法则是: 百位数乘以4加上十位数乘以2, 再加上个位数, 看是否能被8整除。   再证明第三个结论, 判断正整数能否被7整除。 这个问题比前两个要复杂一点, 假设某六位数是ABCDEF= =100000A+10000B+1000C+100D+10E+F =7*(14285A+1428B+142C+14D+E) +(5A+4B+6C+2D+3E+F) 只要5A+4B+6C+2D+3E+F是7的整数倍, 这个正整数也是7的整数倍, 反之亦然。 注意到1000000除以7的余数是1, 则从1000000m+n除以7的余数, 与m+n除以7的余数相同, 故把任意正整数从后到前每6位分一截, 就可应用上述方法判断是否被7整除。 因此判断能否被7整除的法则是: 把这个数从后到前分为每6位一段, 对每一段求5A+4B+6C+2D+3E+F, 再把所有段的值相加, 看结果能否被7整除。   最后,给朋友们拜年了,祝您春节快乐,身体健康,阖家欢乐。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值