几何分布的期望和方差公式推导_二项分布与负二项分布的均值与方差推导

本文详细介绍了如何推导几何分布和负二项分布的期望和方差,通过直接计算、矩生成函数(MGF)以及伯努利和几何分布的关系,阐述了推导过程,帮助理解这两种概率分布的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(好久没写知乎文章了,又不知道该写什么,就随便水一水吧)

二项分布:

次试验,每次试验有
的概率出现目标事件,记
次试验后出现目标事件的次数;

负二项分布:若干次试验,每次试验有

的概率出现目标事件,记
为出现
次目标事件所需要的总试验次数。

首先我们先用最暴力的方法来直接推导它们的期望和方差。

直接算E(X)和Var(X)

二项分布的pmf:

那么:

提出来,容易观察得出剩下那一部分也是一个二项分布的pmf,只不过
变成了
变成了
,那么它求和后结果为1.

因此:

为计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值