python卡方检验计算pvalue值_如何用python计算临界值(critical value)和p值(p value)(scipy)...

z检验:

计算临界值:scipy.stats.norm.ppf(level_of_confidence)

计算p值:scipy.stats.norm.sf(abs(z_score)) 或 1-scipy.stats.norm.cdf(abs(z_score))---左尾或右尾,双尾检验需在此基础上乘以2

计算临界值例子:

from scipy.stats importnorm

critical1=norm.ppf(0.95) #左尾或右尾

critical2=norm.ppf(0.975) #双尾

t检验:

计算临界值:scipy.stats.t.ppf(level_of_confidence, degree_of_freedom)

计算p值:scipy.stats.t.sf(abs(t_score),df) 或 1-scipy.stats.t.cdf(abs(t_score),df)---左尾或右尾,双尾检验需在此基础上乘以2

计算临界值例子:

from scipy.stats importt

critical1=t.ppf(0.95,10) #左尾或右尾

critical2=t.ppf(0.975,10) #双尾

卡方检验:

计算临界值:scipy.stats.chi2.ppf(level_of_confidence, degree_of_freedom)

计算p值:scipy.stats.chi2.sf(abs(chi2_score),df) 或 1-scipy.stats.chi2.cdf(abs(chi2_score),df)---左尾或右尾,双尾检验需在此基础上乘以2

计算临界值例子:

from scipy.stats importchi2

critical1=chi2.ppf(0.95,10) #左尾或右尾

critical2=chi2.ppf(0.975,10) #双尾

F检验:

计算临界值:scipy.stats.f.ppf(level_of_confidence, dfn, dfd)

计算p值:scipy.stats.f.sf(abs(chi2_score),dfn,dfd) 或 1-scipy.stats.chi2.cdf(abs(chi2_score),dfn,dfd)---左尾或右尾,双尾检验需在此基础上乘以2

计算临界值例子:

from scipy.stats importf

critical1=f.ppf(0.95,30,28) #左尾或右尾

critical2=f.ppf(0.975,30,28) #双尾

注:

cdf是概率的累积分布,即小于等于某个值出现的概率总和。

ppf是cdf的逆运算,也就是已知概率总和,求对应的统计量的值。

原文:https://www.cnblogs.com/HuZihu/p/12113253.html

### 关于连接操作中的 P 无法精确计算的原因 在统计学中,当涉及到复杂的数据结构或模型之间的交互时,尤其是通过某种形式的“连接”来构建更复杂的推断框架时,P 可能难以被精确计算。这主要源于以下几个面: #### 1. 数据依赖性非独立性 许多经典的假设检验法(如 t 检验、卡方检验等)都基于一个核心前提——观察之间相互独立。然而,在涉及连接操作的情况下,比如将多个子模型的结果组合起来形成最终结论的过程中,不同部分可能会引入隐含的相关性或依赖关系[^2]。这种相关性破坏了传统统计测试所需的独立同分布 (i.i.d.) 条件,从而使得传统的 P 计算不再适用。 例如,在某些集成学习算法(如随机森林或者 boosting 法)中,各个基分类器虽然单独训练但彼此间存在一定的关联性;又或者是时间序列分析里前后时刻的状态转移也会造成类似的效应。这些情况都会使误差项变得更为复杂而不易于解析表达出来用于后续的概率评估过程之中[^3]。 #### 2. 复杂分布形态下的近似处理 即使能够定义清楚所有变量间的相互作用模式及其对应的联合概率密度函数(pdf),实际运算过程中仍然面临巨大挑战。对于高维空间内的多元正态或其他类型的特殊分布来说,直接积分求解累积分布函数(CDF)往往非常困难甚至不可能完成手工演算工作量过大。因此很多时候不得不采用数模拟技术或者其他简化手段来进行估计而不是得到确切答案[^1]。 具体而言,当我们尝试把若干个简单事件串联起来构成一个新的复合命题并希望据此得出相应显著水平α下拒绝原假设H₀与否的标准界限时,如果每一个组成部分本身已经具备较为复杂的内部结构,则整体系统的特性很可能偏离常规认知范围之外。此时再单纯依靠查表法获取临界点位置显然不够准确可靠。 #### 3. 计算资源限制与效率考量 除了理论上存在的障碍外,实践层面也有诸多因素制约着完全精准地确定某个特定场景下的真实p-value可能性。现代科学研究经常面对海量规模的数据集合以及高度动态变化的目标对象环境设定条件不断调整更新迭代优化案等等都需要消耗大量CPU/GPU周期才能实现预期目标达成预定效果所以有时候为了追求速度牺牲一点精度也是完全可以接受的选择之一. 综上所述,由于上述种种原因共同作用导致我们在很多情况下只能获得关于给定统计数据S相对于零假设成立情形下出现至少如此极端结果的发生几率的一个大致区间估而非绝对意义上的唯一真表示. ```python import scipy.stats as stats # Example of calculating a two-tailed p-value from a t-statistic with given degrees of freedom. def calculate_p_value(t_stat, df): """ Calculate the two-tailed p-value based on the provided t-statistic and degrees of freedom. Parameters: t_stat : float The calculated t-statistic value. df : int Degrees of freedom associated with the sample data used to compute `t_stat`. Returns: float: Two-tailed p-value corresponding to the input parameters. """ prob_one_tail = stats.t.sf(abs(t_stat), df=df) return 2 * prob_one_tail example_t_stat = 2.086 degrees_of_freedom = 9 calculated_p_val = calculate_p_value(example_t_stat, degrees_of_freedom) print(f"P-value for t={example_t_stat} at {degrees_of_freedom} DF is approximately {calculated_p_val:.4f}.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值