垃圾邮件过滤python_手把手教你用 python 和 scikit-learn 实现垃圾邮件过滤-阿里云开发者社区...

本文手把手教你使用Python和scikit-learn建立垃圾邮件过滤器。通过文本挖掘技术,处理Ling-spam数据集,包括数据准备、创建词典、特征提取和训练分类器(朴素贝叶斯、SVM)。实验证明,SVM在测试集上表现优于朴素贝叶斯。
摘要由CSDN通过智能技术生成

文本挖掘(Text Mining,从文字中获取信息)是一个比较宽泛的概念,这一技术在如今每天都有海量文本数据生成的时代越来越受到关注。目前,在机器学习模型的帮助下,包括情绪分析,文件分类,话题分类,文本总结,机器翻译等在内的诸多文本挖掘应用都已经实现了自动化。

在这些应用中,垃圾邮件过滤算是初学者实践文件分类的一个很不错的开始,例如 Gmail 账户里的“垃圾邮箱”就是一个垃圾邮件过滤的现实应用。下面我们将基于一份公开的邮件数据集 Ling-spam,编写一个垃圾邮件的过滤器。Ling-spam 数据集的下载地址如下:

这里我们已经从 Ling-spam 中提取了相同数量的垃圾邮件和非垃圾邮件,具体下载地址如下:

下面我们将通过以下几个步骤,编写一个现实可用的垃圾邮件过滤器。

1.准备文本数据;

2.创建词典(word dictionary);

3.特征提取;

4.训练分类器。

最后,我们会通过一个测试数据集对过滤器进行验证。

1. 准备文本数据

这里我们将数据集分成了训练集(702封邮件)和测试集(260封邮件)两部分,其中垃圾和非垃圾邮件各占 50%。这里因为每个垃圾邮件的数据集都以 spmsg 命名,因此很容易区分。

在大部分的文本挖掘问题中,文本清理都是第一步,即首先要清理掉那些与我们的目标信息无关的词句,本例中也一样。通常邮件里一般都会包含很多无用的字符,比如标点符号,停用词,数字等等,这些字符对检测垃圾邮件没什么帮助,因此我们需要将它们清理掉。这里 Ling-spam 数据集里的邮件已经经过了以下几个步骤的处理:

a) 清除停用词 --- 像 "and", "the", "of" 等这些停用词在英语语句中非常常见。然而,这些停用词对于判定邮件的真实身份并没有什么卵用,所以这些词已经从邮件中被移除。

b) 词形还原 --- 这是一种把同一个词的不同形式组合在一起,以便被当做一个单独项目来分析的过程。举个栗子,"include", "includes" 和 "included" 就可以全部用 "include" 来代表。与此同时,语句的上下文含义也会通过词形还原的方法保留下来,这一点不同于词干提取 (stemming) 的方法(注:词干提取是另一种文本挖掘的方法,此法不考虑语句的含义)。

此外,我们还需要移除一些非文字类的符号(non-words),比如标点符号或者特殊字符之类的。要实现这一步有很多方法,这里,我们将首先创建一个词典(creating a dictionary),之后再移除这些非文字类的符号。需要指出的是,这种做法其实非常方便,因为当你手上有了一个词典之后,对于每一种非文字类符号,只需要移除一次就 ok 了。

2. 创建词典(Creating word dictionary)

一个数据集里的样本邮件一般长这样:

Subject: posting

hi , ' m work pho

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值