定义Triangle2D类,包含:
三个名为p1、p2和p3的MyPoint型数据域,这三个数据域都带有get和set方法。MyPoint在练习题10.4中定义。
一个无参构造方法,该方法创建三个坐标为(0,0)、(1,1)和(2,5)的三个点组成的默认三角形。
一个创建带指定点的三角形构造方法。
一个返回三角形面积的方法getArea()。
一个返回三角形周长的方法getPerimeter()。
如果给定的点p在这个三角形内,那么方法contain(MyPoint p)返回true。如图a所示。
如果给定的三角形在这个三角形内,那么方法contain(Triangle2D t)返回true。如图b所示。
如果给定的三角形和这个三角形重叠,那么方法overlaps(Triangle2D t)返回true。如图c所示。
MyPoint实现起来很简单,相信大家都会就不解释了
一、MyPoint型数据域
为了方便访问三角形的顶点,这里我没有设置访问器和修改器,用了一个数组,当然这样的方法很不规范,能改的话最好还是改了吧。
二、无参构造方法,
在此构造方法中直接对数据域进行赋值即可。
三、创建带指定点的三角形构造方法。
参数为3个MyPoint的对象
四、getArea()。
设A(x1,y1),B(x2,y2),C(x3,y3)
由A-->B-->C-->A 按逆时针方向转。(行列式书写要求)
设三角形的面积为S
| x1 y1 1 |
则S=(1/2)* | x2 y2 1 |
| x3 y3 1 |
S=(1/2)*(x1y2*1+x2y3*1+x3y1*1-x1y3*1-x2y1*1-x3y2*1)
顺时针需取绝对值
即用三角形的三个顶点坐标求其面积的公式为:
S=|(1/2)*(x1y2+x2y3+x3y1-x1y3-x2y1-x3y2)|
五、getPerimeter()。
MyPoint提供了求两点间距离的方法,可直接求三角形的三条边,求和得到周长。
六、 contain(MyPoint p)
注意:1、如果点刚好在三角形的边上,那么会出现一个三角形的面积为0,
2、由于面积是double型数据,double比较时精度会出现问题,所以这里用Double类的compare方法。
七、contain(Triangle2D t)
只需要保证三角形t的三个顶点都在此(this)三角形三角形中即可
八、overlaps(Triangle2D t)
其实我这里还有几种特殊情况没考虑.
public class Triangle2D {
private MyPoint p[]=new MyPoint[3];
public Triangle2D() {
p[0]=new MyPoint(0,0);
p[1]=new MyPoint(1,1);
p[2]=new MyPoint(2,5);
}
public Triangle2D(MyPoint... point){
p[0]=point[0];
p[1]=point[1];
p[2]=point[2];
}
public double getArea(){
return Math.abs(0.5*(p[0].x*p[1].y+p[1].x*p[2].y+p[2].x*p[0].y-p[0].x*p[2].y-p[1].x*p[0].y-p[2].x*p[1].y));
}
public double getPerimeter(){
return p[0].distance(p[1])+p[0].distance(p[2])+p[1].distance(p[2]);
}
public boolean contains(MyPoint p){ //面积法判断点在三角形内
double a=new Triangle2D(this.p[0],this.p[1],p).getArea();
double b=new Triangle2D(this.p[1],this.p[2],p).getArea();
double c=new Triangle2D(this.p[0],this.p[2],p).getArea();
return Double.compare(a+b+c,this.getArea())==0&&a!=0&&b!=0&&c!=0;//面积相等 并且 不存在面积为0的三角形
}
public boolean contains(Triangle2D t){ //保证三个顶点都在三角形内
return contains(t.p[0])&&contains(t.p[1])&&contains(t.p[2]);
}
public boolean judge(MyPoint a,MyPoint b,MyPoint c, MyPoint d){ //跨立实验,向量叉乘
double AB_AC=(c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);
double AB_AD=(d.x-a.x)*(b.y-a.y)-(b.x-a.x)*(d.y-a.y);
double CD_CA=(a.x-c.x)*(d.y-c.y)-(d.x-c.x)*(a.y-c.y);
double CD_CB=(b.x-c.x)*(d.y-c.y)-(d.x-c.x)*(b.y-c.y);
return Double.compare(AB_AC*AB_AD,0)<0&&Double.compare(CD_CA*CD_CB,0)<0;
}
public boolean overlaps(Triangle2D t){
for(int i=0;i<2;i++)//i、j从this三角形中获取两个点
for(int j=i+1;j<3;j++)
for(int a=0;a<2;a++)//a、b从t三角形中从获取两个点
for(int b=a+1;b<3;b++)
if(judge(this.p[i],this.p[j],t.p[a],t.p[j])==true)
return true;
return false;
}
public static void main(String[] args) {
Triangle2D t1=new Triangle2D(new MyPoint(2.5,2),new MyPoint(4.2,3),new MyPoint(5,3.5));
System.out.println("area is : "+t1.getArea()+" Perimeter is : "+t1.getPerimeter());
System.out.println(t1.contains(new MyPoint(3,3)));
System.out.println(t1.contains(new Triangle2D(new MyPoint(2.9,2),new MyPoint(4,1),new MyPoint(1,3.4))));
System.out.println(t1.overlaps(new Triangle2D(new MyPoint(2.5,5),new MyPoint(4,-3),new MyPoint(2,6.5))));
}
}
class MyPoint{
public double x,y;
public MyPoint(){
x=0;y=0;
}
public MyPoint(double x,double y){
this.x=x;this.y=y;
}
public double distance(MyPoint other){
return Math.sqrt(Math.pow(x-other.x,2)+Math.pow(y-other.y,2));
}
public double distance(int x,int y){
return Math.sqrt(Math.pow(x-this.x,2)+Math.pow(y-this.y,2));
}
}