单基因gsea_单基因如何干湿结合发5分+泛癌分析

今天和大家分享的是2020年1月发表在EBioMedicine(IF:5.736)上的一篇文章,作者通过单因素、多因素cox回归分析、KM生存分析等途径建立了TP63亚型的表达对TCGA-膀胱癌(BLCA)及泛癌的差异预后效应,同时首次构建出了TP63在BLCA中的完整亚型列表。

标题:TP63 isoform expression is linked with distinct clinical outcomes in cancer

TP63亚型表达与癌症的不同临床结果有关

一、 研究背景

在多方式的积极治疗下,50%的肌肉浸润性膀胱癌(MIBC)患者仍将发展为致命的转移复发。因此,识别预后生物标志物,以确定患者的复发和死亡风险是至关重要的。TP63通常在膀胱和其他类型的癌症中表达,但它在肿瘤生物学和预后指标中的作用尚不清楚;它可以表达为多个独特的异构体,根据它们表达的氨基端结构域可分为DNp63和TAp63两类。先前的研究表明,这些不同的TP63亚型在肿瘤生物学和患者预后中具有不同的作用,但TP63亚型的表达尚未系统地描述并与临床结果相关。

二、 分析流程

ac29209d4f3c61570b5bdfcb68d4ae10.png

三、 结果解读

1.泛癌中TP63的表达水平及其与生存的关系
  • 作者从TCGA中29个疾病队列中下载了z-score标准化的RNA-seq数据(8519例),以z-score作为标准化后的数据,得到在泛癌中TP63.表达水平较高的几种癌症类型,其中包括BLCA(图1.a)

  • 利用单因素cox回归分析,发现TP63的高表达与以TCGA-低级别胶质瘤(LGG)、TCGA-皮肤黑色素瘤(SKCM)为代表的的癌症队列的生存率降低显著相关;而与以TCGA-乳腺癌(BRCA)等为代表的癌症队列的生存率提高显著相关 (图1.b)

  • 接下来作者针对TP63表达与BLCA患者预后的关系进行分析,首先对BLCA队列患者进行TP63高/低表达的分组(取最低的10%分位数作为分界),接着对TP63高/低表达分组做kaplan-meier(KM)生存分析,结果显示高表达组BLCA患者的中位OS(44.8mos)明显高于低表达组的中位OS(19.8mos)(图1.c、d)

  • 对BLCA不同分子亚型做cox回归分析,发现TP63表达与腔内分子亚型患者生存率提高有显著相关性;而与基础鳞状亚型患者生存率的相关性不显著,这一结果提示了TP63对预后的差异效应可能与癌症的分子亚型有关(图1.e)

ff927ed2a32506533d6a5190983f6c8d.png

图1.泛癌中的TP63表达水平及其生存分析

2.构建BLCA中TP63亚型的完整列表
  • 在Refgene和Gencode数据库中共有14个TP63亚型,而在BLCA队列的至少7%(28名患者)样本中又鉴定出两个额外的TP63异构体,在这里作者将两种异构体称为DNp63αP和DNp63βP, 为了证实DNp63αP和DNp63βP亚型在人膀胱癌中确实表达,作者构建了一组引物(如图2.c)

  • 图2.b显示利用cufflinks获得的TP63异构体目录,同时也是制作引物(图2.c)的依据

  • 用构建好的引物做qPCR。253J和UM-UC10细胞株的内源性TP63表达较低,作为阴性对照。;DNp63α过表达的UM-UC10细胞株作为阳性对照。只有当DNp63α异构体被过表达时,对应于TP63α的PCR产物才能在UM-UC10中被稳定地检测到。以上结果表明:DNp63αP和DNp63βP两种亚型存在于人膀胱癌细胞中(图2.d)

2acd0ed71a122bf1c98e1cb15a334119.png
图2.BLCA中TP63亚型的鉴定过程
3.TP63亚型表达的定量
  • 作者考虑了多个异构体量化算法(Salmon、Kallisto和Cufflinks)后,使用了量化预测结果与TP63亚型的RT-PCR结果最接近的salmon算法,以下是作者对salmon算法准确性的检测。

  • 首先,给出用salmon算法计算出的BLCA队列中的TP63亚型表达水平,以及原发性膀胱癌队列、UMICH膀胱癌细胞系中的TP63亚型表达水平,得出一致的结论:DNp63是膀胱癌中的主要TP63亚型,TAp63的表达相对较少(图3.a、b、c)

  • 对TP63的prime和non-prime型异构体进行RT-PCR,将结果与基于salmon算法的定量结果进行比较,发现结果中都出现了prime亚型高表达,且两种方法得到的表达比例接近(图3.d、e)

  • 对TP63的α、β、δ异构体进行RT-PCR,将结果与基于salmon算法的定量结果进行比较,发现在两种方法得到的结果中α、β、δ异构体的表达比例基本一致(图3.f、g);由以上两点结果证实了使用salmon算法可以准确的预测TP63亚型的表达

  • 为了在蛋白水平检验TP63亚型的表达水平是否与在mRNA水平上的一致,作者对总TP63和TP63α进行了immunoblot(免疫印迹)。结果显示:DNp63α分别占UM-UC5和UM-UC14细胞系中TP63蛋白表达总量的84%和80%;而基于salmon的定量结果显示,在UM-UC5和UC14中DNp63α的表达对应于TP63mRNA总量的90%和91%。这一结果让DNp63是BLCA中的表达的主要亚型有了说服力(图3.h)

  • 对TCGA泛癌队列绘制TP63亚型表达水平的热图,除个别例外,基本与BLCA中的亚型表达比例一致。(图3.i)

2f7b270cef6353191657dcc43f2f68cc.png

图3.用salmon算法进行TP63亚型定量的准确性验证

4.不同TP63亚型对BLCA不同分子亚型的预后影响分析
  • TP63亚型在基底鳞状(BS)、腔乳头(LP)、腔浸润、腔和神经内分泌亚型中的表达谱有明显差异:DNp63亚型在LP和BS亚型中的表达明显高于其他亚型(Wilcoxon p<0.0001);BS亚型患者的TAp63表达明显高于腔内亚型 (Wilcoxon p<0.0001),这说明 DNp63和TAp63在不同BLCA亚型中有不同的表达谱,且会产生不同的预后影响(图4)

9e241e401f06590bd5e8d723329149f3.png 图4.DNp63与TAp63基于BLCA分子亚型的表达差异
  • 将BLCA患者分别按照DNp63表达量(第10%分位数cut-off)和TAp63表达量(第95%分位数cut-off)进行分组,并分别对BLCA、BRCA、TCGA-肺鳞癌(LUSC)做KM生存分析,结果显示DNp63和高表达组和TAp63的低表达组的中位OS明显更高,所以认为DNp63的高表达与患者生存率的提高有关,而TAp63的高表达与患者生存率的降低有关(图5.a、b)

  • 接着作者对DNp63和TAp63两亚型对BLCA分子亚型的具体预后作用做单因素cox分析,发现DNp63与腔内亚型的生存率提高有关(HR=0.89),而与BS亚型预后基本无关;TAp63与BS亚型生存率降低有关(HR=2.35),而与腔内亚型预后基本无关(图5.c)

  • 已知有年龄和病理阶段与BLCA的生存有关,为了验证DNp63和TAp63表达对BLCA预后影响的独立性,作者进行了多因素cox回归分析,结果证明:在控制年龄和病理分期的条件下,DNp63高表达与BLCA预后生存率提高明显有关,TAp63高表达与BLCA生存率降低明显有关,证明了两种亚型对BLCA预后价值的独立性(图5.d)

ad366c5f305b2bdb342d5af02fe30930.png 图5.DNp63和TAp63对BLCA不同分子亚型的具体预后关系
  • 分别用DNp63和TAp63亚型与TCGA泛癌队列做单因素cox回归,将两种TP63亚型表达的预后价值上升到泛癌水平,结果显示,DNp63高表达改善了BRCA、BLCA、LUSC等的癌症预后;而TAp63的高表达则与BLCA、LUSC等癌症的预后恶化有关(图6.a、b)

  • 由于DNp63和TAp63表达与预后的相反关系,作者假设TP63与预后改善或恶化的关联可能要用DNp63和TAp63两种异构体的相对丰度的变化来解释。于是作者分别计算了TAp63和DNp63在TCGA各类癌症人群中相对于TP63的平均比例,并将每种癌症的这一数值与对应癌症HR值相关联作出散点图,结果显示TP63预后较差的疾病具有更高的TAp63水平和更低的DNp63水平(图6.c、d)

3c8279620e93ab66e78006c73a9191b8.png 图6.DNp63和TAp63在泛癌水平的预后效应
5.DNp63与TAp63的相关信号通路预测
  • 分别做BLCA、BRCA、LUSC人群中高表达DNp63和高表达TAp63的队列的GSEA基因富集分析,(用Wilcoxon-P值来对GSEA的基因集进行排序,并识别统计富集的基因集)。发现DNp63高表达的肿瘤患者有与表皮细胞分化、角化和皮肤发育有关的富集基因集;将同样的方法应用于TAP63,发现了与适应性和天然免疫反应、VEGF通路、Jak- Stat通路和其他几种转录因子(CHOP、PAX6、TCF11、MAFG) 有关的常见富集基因集(图7.a、b)

  • 作者使用来自HPRD数据库(human protein reference database:人类蛋白互作信息数据库http://www.hprd.org/)中的蛋白相互作用数据来识别可能与TAP63相关的候选信号通路。由32个基因构建的通路包含总共40个蛋白质相互作用,包括与免疫反应、细胞应激反应和肌动蛋白细胞骨架组织有关的信号。这些发现意味着TAp63具有作为免疫细胞相互作用的生物标志物的潜力,进一步增强了它的预后价值(图7.c)

5d54910f60ee6915705842233a38de56.png 图7.DNp63和TAp63亚型的信号通路预测

小结

本篇文章中作者为了阐明TP63在癌症患者预后中的作用,对TCGA泛癌队列的TP63表达进行了全面的分析,然后将TP63的表达与患者的预后相关联。并将研究范围集中在了膀胱癌队列上,对TAp63和DNp63对膀胱癌不同亚型的预后价值给出详细分析,验证了癌症预后与两亚型的比例有关的假设。最后还利用GSEA富集分析和HPRD数据库对TP63亚型的相关信号通路给出预测,提出了TAp63具有作为免疫细胞相互作用的生物标志物的潜力;另外值得一提的是,作者在确定BLCA中的TP63亚型目录时发现了DNp63αp和DNp63βp两种以前没有被注释过的亚型的表达,并在此基础上完成了首次对TP63在泛癌水平上的表达分析。 后台回复: 泛癌 ,获取泛癌文章合集

最近公众号改版,

以防失联,加个星标吧!

64f7382dbb11e07f780bd115f068599e.gif

往期推荐e66e4c830f21f9e90447b7c8bf79903a.png

00911167e5e6a2f36a7f966e0019b7de.png

6d3d2a2c1c1141a3c003cf7b9efecd0f.png

1065f30df8e179e2110f5facd70336b9.png

9ef48f39258935436d23aeddf601ad58.gif

943105b24efea73ecf1efd8b23ebad95.png

d3bdec98d8c92dc2af94ccac73f86316.png

多点好看,少点脱发

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值