回归树 python_机器学习实战笔记(Python实现)-09-树回归

----------------------------------------------------------------------------------------

本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。

----------------------------------------------------------------------------------------

1、连续和离散型特征的树的构建

决策树算法主要是不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止。它是一种贪心算法,并不考虑能否达到全局最优。前面介绍的用ID3构建决策树的算法每次选取当前最佳的特征来分割数据,并按照该特征的所有可能取值来划分,这种切分过于迅速,且不能处理连续性特征。另外一种方法是二元切分法,每次把数据集切成两份,如果数据的某特征等于切分所要求的值,那么这些数据就进入树的左子树,反之右子树。二元切分法可处理连续型特征,节省树的构建时间。

这里依然使用字典来存储树的数据结构,该字典将包含以下4个元素:

待切分的特征

待切分的特征值

右子树,不需切分时,也可是单个值

左子树,右子树类似

本章将构建两种树:第一种是第2节的回归树(regression tree),其每个叶节点包含单个值;第二种是第3节的模型树(model tree),其每个叶节点包含一个线性方程。创建这两种树时,我们将尽量使得代码之间可以重用。下面先给出两种树构建算法中的一些共用代码。

1 from numpy import *

2

3 defloadDataSet(fileName):4 '''

5 读取一个一tab键为分隔符的文件,然后将每行的内容保存成一组浮点数6 '''

7 dataMat =[]8 fr =open(fileName)9 for line infr.readlines():10 curLine = line.strip().split('\t')11 fltLine =map(float,curLine)12 dataMat.append(fltLine)13 returndataMat14

15 defbinSplitDataSet(dataSet, feature, value):16 '''

17 数据集切分函数18 '''

19 mat0 = dataSet[nonzero(dataSet[:,feature] >value)[0],:]20 mat1 = dataSet[nonzero(dataSet[:,feature] <=value)[0],:]21 returnmat0,mat122

23 def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):24 '''

25 树构建函数26 leafType:建立叶节点的函数27 errType:误差计算函数28 ops:包含树构建所需其他参数的元组29 '''

30 #选择最优的划分特征

31 #如果满足停止条件,将返回None和某类模型的值

32 #若构建的是回归树,该模型是一个常数;如果是模型树,其模型是一个线性方程

33 feat, val =chooseBestSplit(dataSet, leafType, errType, ops)34 if feat == None: return val #35 retTree ={}36 retTree['spInd'] =feat37 retTree['spVal'] =val38 #将数据集分为两份,之后递归调用继续划分

39 lSet, rSet =binSplitDataSet(dataSet, feat, val)40 retTree['left'] =createTree(lSet, leafType, errType, ops)41 retTree['right'] =createTree(rSet, leafType, errType, ops)42 return retTree

2、CART回归树

CART(Classification And Regression Trees, 分类回归树)是十分著名的树构建算法,它使用二元切分来处理连续性变量,对其稍作修改就可处理回归问题。

2.1 构建树

①切分数据集并生成叶节点

给定某个误差计算方法,chooseBestSplit()函数会找到数据集上最佳的二元切分方式,此外,该函数还要确定什么时候停止切分,一旦停止切分会生成一个叶节点。该函数伪代码大致如下:

②计算误差

这里采用计算数据的平方误差。

Python代码:

1 defregLeaf(dataSet):2 '''负责生成叶节点'''

3 #当chooseBestSplit()函数确定不再对数据进行切分时,将调用本函数来得到叶节点的模型。

4 #在回归树中,该模型其实就是目标变量的均值。

5 return mean(dataSet[:,-1])6

7 defregErr(dataSet):8 '''

9 误差估计函数,该函数在给定的数据上计算目标变量的平方误差,这里直接调用均方差函数10 '''

11 return var(dataSet[:,-1]) * shape(dataSet)[0]#返回总方差

12

13 def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):14 '''

15 用最佳方式切分数据集和生成相应的叶节点16 '''

17 #ops为用户指定参数,用于控制函数的停止时机

18 tolS = ops[0]; tolN = ops[1]19 #如果所有值相等则退出

20 if len(set(dataSet[:,-1].T.tolist()[0])) == 1:21 returnNone, leafType(dataSet)22 m,n =shape(dataSet)23 S =errType(dataSet)24 bestS = inf; bestIndex = 0; bestValue =025 #在所有可能的特征及其可能取值上遍历,找到最佳的切分方式

26 #最佳切分也就是使得切分后能达到最低误差的切分

27 for featIndex in range(n-1):28 for splitVal inset(dataSet[:,featIndex]):29 mat0, mat1 =binSplitDataSet(dataSet, featIndex, splitVal)30 if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue

31 newS = errType(mat0) +errType(mat1)32 if newS <33 bestindex="featIndex34" bestvalue="splitVal35" bests="newS36">

37 if (S - bestS) <38 returnnone leaftype mat0 mat1="binSplitDataSet(dataSet," bestindex bestvalue>

41 if (shape(mat0)[0] < tolN) or (shape(mat1)[0]

44 return bestIndex,bestValue

主要测试命令:

>>>reload(regTrees)>>> myData = regTrees.loadDataSet('ex00.txt')>>> myMat =mat(myData)>>> regTrees.createTree(myMat)

【注意】本代码在Python3.5环境下测试未通过,错误发生在以上第5行-->return mean(dataSet[:,-1])

错误类型为 TypeError: unsupported operand type(s) for /: 'map' and 'int' 暂未找到解决办法。所以,以下测试结果均来自书本。

2.2 剪枝

一棵树如果节点过多,表明该模型可能对数据进行了“过拟合”。通过降低决策树的复杂度来避免过拟合的过程称为剪枝(pruning) 。

①预剪枝

在函数chooseBestSplit()中的提前终止条件,实际上是在进行一种所谓的预剪枝(prepruning)操作。树构建算法其实对输人的参数tols和tolN非常敏感,如果使用其他值将不太容易达到这么好的效果。

②后剪枝

使用后剪枝方法需要将数据集分成测试集和训练集。首先指定参数,使得构建出的树足够大、足够复杂,便于剪枝。接下来从上而下找到叶节点,用测试集来判断将这些叶节点合并是否能降低测试误差。如果是的话就合并 。

Python实现代码:

1 defprune(tree, testData):2 '''回归树剪枝函数'''

3 if shape(testData)[0] == 0: return getMean(tree) #无测试数据则返回树的平均值

4 if (isTree(tree['right']) or isTree(tree['left'])):#5 lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])6 if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)7 if isTree(tree['right']): tree['right'] = prune(tree['right'], rSet)8 #如果两个分支已经不再是子树,合并它们

9 #具体做法是对合并前后的误差进行比较。如果合并后的误差比不合并的误差小就进行合并操作,反之则不合并直接返回

10 if not isTree(tree['left']) and not isTree(tree['right']):11 lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])12 errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +\13 sum(power(rSet[:,-1] - tree['right'],2))14 treeMean = (tree['left']+tree['right'])/2.0

15 errorMerge = sum(power(testData[:,-1] - treeMean,2))16 if errorMerge <17 print returntreemean19 else: returntree20>

21 defisTree(obj):22 '''判断输入变量是否是一棵树'''

23 return (type(obj).__name__=='dict')24

25 defgetMean(tree):26 '''从上往下遍历树直到叶节点为止,计算它们的平均值'''

27 if isTree(tree['right']): tree['right'] = getMean(tree['right'])28 if isTree(tree['left']): tree['left'] = getMean(tree['left'])29 return (tree['left']+tree['right'])/2.0

测试命令:

reload(regTrees)

myData2= regTrees.loadDataSet('ex2.txt')

myMat2=mat(myData2)from numpy import *myMat2=mat(myData2)

regTrees.createTree(myMat2)

myTree= regTrees.createTree(myMat2, ops=(0,1))

myDataTest= regTrees.loadDataSet('ex2test.txt')

myMat2Test=mat(myDataTest)

regTrees.prune(myTree, myMat2Test)

3、模型树

①叶节点

用树建模,除了把叶节点简单地设定为常数值外,还可把叶节点设定为分段线性函数,这里的分段线性是指模型由多个线性片段组成。

如下图所示数据,如果使用两条直线拟合是否比使用一组常数来建模好呢?答案显而易见。可以设计两条分别从0.0~0.3、从0.3~1.0的直线,于是就可以得到两个线性模型。因为数据集里的一部分数据(0.0~0.3)以某个线性模型建模,而另一部分数据(0.3~1.0)则以另一个线性模型建模,因此我们说采用了所谓的分段线性模型。

②误差计算

前面用于回归树的误差计算方法这里不能再用。稍加变化,对于给定的数据集,先用线性的模型来对它进行拟合,然后计算真实的目标值与模型预测值间的差值。最后将这些差值的平方求和就得到了所需的误差。

与回归树不同,模型树Python代码有以下变化:

1 deflinearSolve(dataSet):2 '''将数据集格式化成目标变量Y和自变量X,X、Y用于执行简单线性回归'''

3 m,n =shape(dataSet)4 X = mat(ones((m,n))); Y = mat(ones((m,1)))5 X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]#默认最后一列为Y

6 xTx = X.T*X7 #若矩阵的逆不存在,抛异常

8 if linalg.det(xTx) == 0.0:9 raise NameError('This matrix is singular, cannot do inverse,\n\10 try increasing the second value of ops')11 ws = xTx.I * (X.T * Y)#回归系数

12 returnws,X,Y13

14 defmodelLeaf(dataSet):15 '''负责生成叶节点模型'''

16 ws,X,Y =linearSolve(dataSet)17 returnws18

19 defmodelErr(dataSet):20 '''误差计算函数'''

21 ws,X,Y =linearSolve(dataSet)22 yHat = X *ws23 return sum(power(Y - yHat,2))

测试命令:

>>> regTrees.createTree(myMat,regTrees.modelLeaf,regTrees.modelErr.(1,10))

4、实例:树回归与标准回归的比较

前面介绍了模型树、回归树和一般的回归方法,下面测试一下哪个模型最好。这些模型将在某个数据上进行测试,该数据涉及人的智力水平和自行车的速度的关系。

1 def createForeCast(tree, testData, modelEval=regTreeEval):2 #多次调用treeForeCast()函数,以向量形式返回预测值,在整个测试集进行预测非常有用

3 m=len(testData)4 yHat = mat(zeros((m,1)))5 for i inrange(m):6 yHat[i,0] =treeForeCast(tree, mat(testData[i]), modelEval)7 returnyHat8

9 def treeForeCast(tree, inData, modelEval=regTreeEval):10 '''

11 # 在给定树结构的情况下,对于单个数据点,该函数会给出一个预测值。12 # modeEval是对叶节点进行预测的函数引用,指定树的类型,以便在叶节点上调用合适的模型。13 # 此函数自顶向下遍历整棵树,直到命中叶节点为止,一旦到达叶节点,它就会在输入数据上14 # 调用modelEval()函数,该函数的默认值为regTreeEval()15 '''

16 if not isTree(tree): returnmodelEval(tree, inData)17 if inData[tree['spInd']] > tree['spVal']:18 if isTree(tree['left']): return treeForeCast(tree['left'], inData, modelEval)19 else: return modelEval(tree['left'], inData)20 else:21 if isTree(tree['right']): return treeForeCast(tree['right'], inData, modelEval)22 else: return modelEval(tree['right'], inData)23

24 defregTreeEval(model, inDat):25 #为了和modeTreeEval()保持一致,保留两个输入参数

26 returnfloat(model)27

28 defmodelTreeEval(model, inDat):29 #对输入数据进行格式化处理,在原数据矩阵上增加第0列,元素的值都是1

30 n = shape(inDat)[1]31 X = mat(ones((1,n+1)))32 X[:,1:n+1]=inDat33 return float(X*model)

测试命令:

#回归树

>>>reload(regTrees)>>> trainMat = mat(regTrees.loadDataSet('bikeSpeedVsIq_train.txt'))>>> testMat = mat(regTrees.loadDataSet('bikeSpeedVsIq_test.txt'))>>> myTree = regTrees.createTree(trainMat, ops=(1,20))>>> yHat =regTrees.createForeCast(myTree, testMat[:,0])>>> corrcoef(yHat, testMat[:,1], rowvar=0)

array([[1. , 0.96408523],

[0.96408523, 1. ]])#模型树

>>> myTree =regTrees.createTree(trainMat, regTrees.modelLeaf, regTrees.modelErr

, (1,20))>>> yHat =regTrees.createForeCast(myTree, testMat[:,0], regTrees.modelTreeEval)>>> corrcoef(yHat, testMat[:,1], rowvar=0)[0,1]0.97604121913806285

#标准回归

>>> ws, X, Y =regTrees.linearSolve(trainMat)>>>ws

matrix([[37.58916794],

[6.18978355]])>>> for i inrange(shape(testMat)[0]) :

... yHat[i]= testMat[i,0]*ws[1,0] +ws[0,0]

...>>> corrcoef(yHat, testMat[:,1], rowvar=0)[0,1]0.94346842356747584

THE END.

17>38>33>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值