pythonlist排序算法_Python版常见的排序算法

本文详细介绍了比较类排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、快速排序、归并排序和堆排序的工作原理、时间复杂度和稳定性。特别强调了快速排序、归并排序和堆排序这三种时间复杂度为O(nlogn)的排序算法,它们在效率上优于其他O(n^2)的排序方法。同时,文章指出非比较类排序虽然能突破时间下界,但适用范围有限。
摘要由CSDN通过智能技术生成

学习笔记

排序算法

1962437-20200819113302221-1153127277.png

排序分为两类,比较类排序和非比较类排序,比较类排序通过比较来决定元素间的相对次序,其时间复杂度不能突破O(nlogn);非比较类排序可以突破基于比较排序的时间下界,缺点就是一般只能用于整型相关的数据类型,需要辅助的额外空间。

要求能够手写时间复杂度位O(nlogn)的排序算法:快速排序、归并排序、堆排序

1.冒泡排序

思想:相邻的两个数字进行比较,大的向下沉,最后一个元素是最大的。列表右边先有序。

时间复杂度$O(n^2)$,原地排序,稳定的

def bubble_sort(li:list):

for i in range(len(li)-1):

for j in range(i + 1, len(li)):

if li[i] > li[j]:

li[i], li[j] = li[j], li[i]

2.选择排序

思想:首先找到最小元素,放到排序序列的起始位置,然后再从剩余元素中继续寻找最小元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。列表左边先有序。

时间复杂度$O(n^2)$,原地排序,不稳定

def select_sort(nums: list):

for i in range(len(nums) - 1):

min_index = i

for j in range(i + 1, len(nums)):

if nums[j] < nums[i]:

min_index = j

nums[i], nums[min_index] = nums[min_index], nums[i]

3.插入排序

思想:构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。列表左边先有序。

时间复杂度$O(n^2)$,原地排序,稳定

def insert_sort(nums: list):

for i in range(len(nums)):

current = nums[i]

pre_index = i - 1

while pre_index >= 0 and nums[pre_index] > current:

nums[pre_index + 1] = nums[pre_index]

pre_index -= 1

nums[pre_index + 1] = current

4.希尔排序

思想:插入排序的改进版,又称缩小增量排序,将待排序的列表按下标的一定增量分组,每组分别进行直接插入排序,增量逐渐减小,直到为1,排序完成

时间复杂度$O(n^{1.5})$,原地排序,不稳定

def shell_sort(nums: list):

gap = len(nums) >> 1

while gap > 0:

for i in range(gap, len(nums)):

current = nums[i]

pre_index = i - gap

while pre_index >= 0 and nums[pre_index] > current:

nums[pre_index + gap] = nums[pre_index]

pre_index -= gap

nums[pre_index + gap] = current

gap >>= 1

5.快速排序

思想:递归,列表中取出第一个元素,作为标准,把比第一个元素小的都放在左侧,把比第一个元素大的都放在右侧,递归完成时就是排序结束的时候

时间复杂度$O(nlogn)$,空间复杂度$O(logn)$,不稳定

def quick_sort(li:list):

if li == []:

return []

first = li[0]

# 推导式实现

left = quick_sort([l for l in li[1:] if l < first])

right = quick_sort([r for r in li[1:] if r >= first])

return left + [first] + right

6.归并排序

思想:分治算法,拆分成子序列,使用归并排序,将排序好的子序列合并成一个最终的排序序列。关键在于怎么合并:设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放到合并空间,并将该指针移到下一位置,直到某一指针超出序列尾,将另一序列所剩下的所有元素直接复制到合并序列尾。

时间复杂度$O(nlogn)$,空间复杂度O(n),不稳定

二路归并

def merge_sort(nums: list):

if len(nums) <= 1:

return nums

mid = len(nums) >> 1

left = merge_sort(nums[:mid]) # 拆分子问题

right = merge_sort(nums[mid:])

def merge(left, right): # 如何归并

res = []

l, r = 0, 0

while l < len(left) and r < len(right):

if left[l] <= right[r]:

res.append(left[l])

l += 1

else:

res.append(right[r])

r += 1

res += left[l:]

res += right[r:]

return res

return merge(left, right)

7.堆排序

思想:根节点最大,大顶堆,对应升序,根节点最小,小顶堆。

构建大根堆,完全二叉树结构,初始无序

最大堆调整,进行堆排序。将堆顶元素与最后一个元素交换,此时后面有序

时间复杂度$O(nlogn)$,原地排序,稳定

def heap_sort(nums: list):

def heapify(parent_index, length, nums):

temp = nums[parent_index] # 根节点的值

chile_index = 2 * parent_index + 1 # 左节点,再加一为右节点

while chile_index < length:

if chile_index + 1 < length and nums[chile_index + 1] > nums[chile_index]:

chile_index = chile_index + 1

if temp > nums[chile_index]:

break

nums[parent_index] = nums[chile_index] # 使得根节点最大

parent_index = chile_index

chile_index = 2 * parent_index + 1

nums[parent_index] = temp

for i in range((len(nums) - 2) >> 1, -1, -1):

heapify(i, len(nums), nums) # 1.建立大根堆

for j in range(len(nums) - 1, 0, -1):

nums[j], nums[0] = nums[0], nums[j]

heapify(0, j, nums) # 2.堆排序,为升序

if __name__ == '__main__':

nums = [89, 3, 3, 2, 5, 45, 33, 67] # [2, 3, 3, 5, 33, 45, 67, 89]

heap_sort(nums)

print(nums)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值