向量空间的基和维数例题_线性空间的基和维数

本文深入探讨了线性空间的基和维数概念,包括域上线性空间的定义、性质,向量集的线性相关与线性无关的性质,以及基和维数的定义与定理。通过命题和例题阐述了如何判断线性相关性、线性表出,以及如何找到线性空间的基。同时,提供了几个考研真题作为实例,帮助读者巩固理解。
摘要由CSDN通过智能技术生成

本节就线性空间的基和维数进行分析总结,这一节是考研中容易出现的一部分,虽然概念性比较多,但是容易理解,也是很基础容易掌握的一部分,所以希望大家掌握本节老师给出的所有定义,定理及其例题.

一. 域F上线性空间的定义及其简单性质

定义1. 一个非空集合V,如果它有加法运算(即V×V到V的一个映射),其元素与域F的元素之间的纯量乘法运算(即F×V到V的一个映射),并满足下述8条运算法则

1.

2.

3.V中有一个元素,记作0,它使得

具有该性质的元素0称为V的零元;

4.对于

,存在

,使得

具有该性质的元素

称为 V 的零元.

5.

其中 1 是 F 的单位元.

6.

7.

8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值