特征值近似计算方法MATLAB,第五章 矩阵的特征值与特征向量的计算

该博客介绍了如何使用MATLAB的幂法计算矩阵的主特征值和对应的特征向量,提供了MATLAB函数`mifa`的详细说明,并通过实例展示了计算过程。内容包括矩阵A、B、C、D的特征值计算,对比了迭代结果与`eig`函数的精确解,突出了迭代误差和收敛性。
摘要由CSDN通过智能技术生成

46.

f5548bfed71cf6da4f39692836c2de3d.png

5.2 幂法及其MATLAB 程序

5.2.2 幂法的MATLAB 程序

用幂法计算矩阵A 的主特征值和对应的特征向量的MATLAB 主程序

function [k,lambda,Vk,Wc]=mifa(A,V0,jd,max1) lambda=0;k=1;Wc =1; ,jd=jd*0.1;state=1; V=V0; while ((k<=max1)&(state==1))

Vk=A*V; [m j]=max(abs(Vk)); mk=m; tzw=abs(lambda-mk); Vk=(1/mk)*Vk;

Txw=norm(V-Vk); Wc=max(Txw,tzw); V=Vk;lambda=mk;state=0; if (Wc>jd)

state=1; end

k=k+1;Wc=Wc;

end

if (Wc<=jd)

disp('请注意:迭代次数k,主特征值的近似值lambda,主特征向量的近似向量Vk,相邻两次迭代的误差Wc 如下:') else

disp('请注意:迭代次数k 已经达到最大迭代次数max1,主特征值的迭代

值lambda,主特征向量的迭代向量Vk,相邻两次迭代的误差Wc 如下:') end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值