- 博客(113)
- 资源 (3)
- 收藏
- 关注
原创 以California Housing Prices Dataset为例使用Captum解释回归模型
以California Housing Prices Dataset为例使用Captum解释回归模型
2024-03-18 16:56:39
819
原创 散射成像相关原理的数学理论推导与证明
T是一个N × M的复数矩阵,用来表征由波动方程中的非均匀折射率引起的输入和目标平面之间的散射。激光穿透散射介质时产生的散斑为菲涅尔型散斑,接收面上的点为散射介质表面上所有散射点源子光波的相干叠加,散斑的平均尺寸与散射介质对接收面的张角。实际的衍射可以分为两种类型,在理想状态下,当光的传播距离为有限远时,一般采用菲涅耳衍射,反之,传播距离为无限远时,则采用夫琅和费衍射。在散射介质中,光波沿不同方向传播,具有不同的振幅和相位,它们之间的矢量叠加,通过相干相长与相干相消,就产生了亮暗交替的光学散斑现象。
2023-12-31 00:02:59
2150
原创 PYTHON入门级游戏开发:宇宙飞船游戏两万字详析
详细介绍了python中一个经典的游戏项目,帮助初学者快速在游戏开发项目掌握python的开发技巧。
2023-12-26 22:30:07
305
原创 2023年排行前五的大规模语言模型(LLM)
在人工智能迅速发展的今天,大型语言模型(LLMs)已经成为人们热议的话题。它们在自然语言处理(NLP)领域取得了巨大的成功,并且已经广泛用于各种应用,从文本生成到问题回答,再到对话式AI。我们看到了许多公司不断推出越来越强大的LLMs,这些模型在语言理解和生成方面超越了以前的记录。在2023年,像GPT-4、GPT-3、Gopher、PaLM和LaMDA等最先进的LLMs展示了人工智能在理解和处理人类语言方面的显著进展。
2023-08-17 04:15:27
4313
原创 关于牛津大学暑研项目的总结和收获
关于这篇博客主要是想记录一下这次项目的一些收获和心得,一如三年前参与新加坡国立大学的寒研项目一样。我这次的参加的日期是在八月份的数学,物理和计算机类的,这次分享的内容主要集中在学术、生活和思维三个方面。首先展示几张牛津的美景吧,牛津大学既是一个大学,又是一个城市,可以说是一体化发展的模型,这种模式在英国是比较常见的。
2023-08-16 06:36:46
391
1
原创 电赛汇总(三):硬件处理算法设计
通常系统由数字电路和模拟电路组成,模拟电路主要用于信号的处理,数字电路主要用于采集和控制系统。系统控制通常在单片机或可编程逻辑器件中通过软件实现,这些软件控制思想经过累积、总结,最后形成算法思想。算法可实现系统控制、数据压缩和恢复、数字滤波等功能,熟悉这些算法的控制原理和实现方法有利于完善系统的控制。连续时间 PID控制系统如图3-37所示,D(s)完成 PID控制规律,称为 PID控制器。
2023-06-27 21:27:45
1361
1
原创 30分钟使用百度EasyDL实现烟雾检测
如果训练得到的模型效果未达到预期,可通过查看模型评估报告来进行分析,并针对性进行效果优化。通过查看模型评估报告,发现识别漏的Badcase主要是烟头目标过小,识别错的Badcase主要是存在一些与烟头近似的物体。因此,可在业务上进行引导,增加包含小目标烟头的图片数据量,并增加包含烟头近似物体的图片数据量,从而帮助训练出更准确的模型。10.点击无标注信息–本地导入–上传压缩包–上传之前下载的数据集压缩包即可。16.选择训练模型,选择之前创建的模型,添加之前上传的数据集。–可以点击–申请发布。...
2022-08-09 16:31:22
1469
原创 狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层
狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层在这篇文章中您将会从数学和算法两个角度去重新温习一下卷积层,激活函数,池化层,Dropout层,BN层,全链接层,为您以后修改架构或者自己调试模型提供便利。点这里直接跳读狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层卷积层激活函数层Sigmoid函数ReLU函数Softmax函数池化层Dropout层BN层全连接层卷积层卷积本是分析数学中的一种运算,在深度学习中使用的卷
2022-03-30 10:18:32
8707
4
原创 手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练
手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练我这几天遇到一个不错的范例,将的是一层一层教我们搭建一个神经网络,其实很多我接触过的伙伴对修改模型架构这块还是头疼。其实我么可以从简单的神经网络层开始,自己DIY每一层,对上手修改架构有帮助。这里用的是paddle框架,当然玩pytorch的朋友也别急着关掉,因为我这几天刷到的pytorch感觉和飞桨的这块几乎是非常相似。只是有点点表达不一样,其他都完全一样。甚至连编程习惯都非常一样。下面是来自PaddlePaddle
2022-03-29 14:31:52
2120
原创 【OpenVINO+paddle】OpenVINO核心部署代码讲解-步步打印结果
这个问题是我遇到很多小伙伴问的,这个推理的API难度不大,主要涉及四个步骤:加载模型和硬件、检测输入输出、输入重塑以及执行推理。大致可以参考下面这张图片:OpenVINO™负载推理引擎和显示信息加载一个模型IR模型ONNX模型获取关于模型的信息模型的输入模型输出对模型进行推理重塑和调整改变图像大小批量大小变化缓存一个模型1.用Core()初始化推理引擎from openvino.runtime import Coreie = Core()推理引擎可以在设备上加载网络。这里
2022-03-23 13:43:28
3404
1
原创 一图带你了解完飞桨架构、工具及其所有组件
这张图点这里快速查阅1.框架和全流程工具1)模型训练组件2)模型部署组件Paddle Inference:Paddle Serving:Paddle Lite:Paddle.jsPaddeSlim:X2Paddle:3)其他全研发流程的辅助工具AutoDL:VisualDL:PaddleFL:PaddleX:2.模型资源PaddleHub:ERNIE:PaddleClas:PaddleDetection:PaddleSeg:ElasticCTR:PLSC:ElasticCTR:Parakeet:PGL:
2022-03-21 22:48:47
2969
1
原创 【OpenVINO+PaddlePaddle】OpenVINO迎来最新版本:2022.1-里程碑式的新节点
这次的OpenVINO™将迎来发布以来最大的更新,将对CPU、GPU(intel)、FPGA、VPU等硬件上部署和推理AI模型产生巨大的影响。首先如果您用过往期的产品您就会对过去的OpenVINO™有所了解:安装麻烦、模型转化繁琐、前端和后端函数分离不容易了解硬件相关配置、多硬件异构配置复杂、只支持静态输入等等。这里的所有问题都将会在2022.1得到优化和解决。这次在新版本您将可以:1、无需转化onnx,实现快速部署PaddlePaddle2、支持动态和静态输入3、根据您的硬件参数配置(CPU核数、
2022-03-16 15:14:43
3033
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人