- 博客(114)
- 资源 (3)
- 收藏
- 关注
原创 30分钟使用百度EasyDL实现烟雾检测
如果训练得到的模型效果未达到预期,可通过查看模型评估报告来进行分析,并针对性进行效果优化。通过查看模型评估报告,发现识别漏的Badcase主要是烟头目标过小,识别错的Badcase主要是存在一些与烟头近似的物体。因此,可在业务上进行引导,增加包含小目标烟头的图片数据量,并增加包含烟头近似物体的图片数据量,从而帮助训练出更准确的模型。10.点击无标注信息–本地导入–上传压缩包–上传之前下载的数据集压缩包即可。16.选择训练模型,选择之前创建的模型,添加之前上传的数据集。–可以点击–申请发布。...
2022-08-09 16:31:22
463
原创 狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层
狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层在这篇文章中您将会从数学和算法两个角度去重新温习一下卷积层,激活函数,池化层,Dropout层,BN层,全链接层,为您以后修改架构或者自己调试模型提供便利。点这里直接跳读狠补基础-数学+算法角度讲解卷积层,激活函数,池化层,Dropout层,BN层,全链接层卷积层激活函数层Sigmoid函数ReLU函数Softmax函数池化层Dropout层BN层全连接层卷积层卷积本是分析数学中的一种运算,在深度学习中使用的卷
2022-03-30 10:18:32
6312
4
原创 手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练
手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练我这几天遇到一个不错的范例,将的是一层一层教我们搭建一个神经网络,其实很多我接触过的伙伴对修改模型架构这块还是头疼。其实我么可以从简单的神经网络层开始,自己DIY每一层,对上手修改架构有帮助。这里用的是paddle框架,当然玩pytorch的朋友也别急着关掉,因为我这几天刷到的pytorch感觉和飞桨的这块几乎是非常相似。只是有点点表达不一样,其他都完全一样。甚至连编程习惯都非常一样。下面是来自PaddlePaddle
2022-03-29 14:31:52
1110
原创 【OpenVINO+paddle】OpenVINO核心部署代码讲解-步步打印结果
这个问题是我遇到很多小伙伴问的,这个推理的API难度不大,主要涉及四个步骤:加载模型和硬件、检测输入输出、输入重塑以及执行推理。大致可以参考下面这张图片:OpenVINO™负载推理引擎和显示信息加载一个模型IR模型ONNX模型获取关于模型的信息模型的输入模型输出对模型进行推理重塑和调整改变图像大小批量大小变化缓存一个模型1.用Core()初始化推理引擎from openvino.runtime import Coreie = Core()推理引擎可以在设备上加载网络。这里
2022-03-23 13:43:28
2731
1
原创 一图带你了解完飞桨架构、工具及其所有组件
这张图点这里快速查阅1.框架和全流程工具1)模型训练组件2)模型部署组件Paddle Inference:Paddle Serving:Paddle Lite:Paddle.jsPaddeSlim:X2Paddle:3)其他全研发流程的辅助工具AutoDL:VisualDL:PaddleFL:PaddleX:2.模型资源PaddleHub:ERNIE:PaddleClas:PaddleDetection:PaddleSeg:ElasticCTR:PLSC:ElasticCTR:Parakeet:PGL:
2022-03-21 22:48:47
1252
1
原创 【OpenVINO+PaddlePaddle】OpenVINO迎来最新版本:2022.1-里程碑式的新节点
这次的OpenVINO™将迎来发布以来最大的更新,将对CPU、GPU(intel)、FPGA、VPU等硬件上部署和推理AI模型产生巨大的影响。首先如果您用过往期的产品您就会对过去的OpenVINO™有所了解:安装麻烦、模型转化繁琐、前端和后端函数分离不容易了解硬件相关配置、多硬件异构配置复杂、只支持静态输入等等。这里的所有问题都将会在2022.1得到优化和解决。这次在新版本您将可以:1、无需转化onnx,实现快速部署PaddlePaddle2、支持动态和静态输入3、根据您的硬件参数配置(CPU核数、
2022-03-16 15:14:43
2531
1
原创 Tensorflow,pytorch,Caffe,MXNet,PaddlePaddle,THeano算法框架哪家强?
深度学习架构TensorflowCaffePytorchMXNetCNTKPaddlepaddleDarknet深度学习平台介绍这里将详细介绍目前应用最广泛的7种深度学习平台(包括 Tensorflow、 Caffe、 Pytorch、MXNet、CNTK、 Paddlepaddle、Darknet)的基本原理、主要特性和优势,以及它们的应用场景,并且对它们未来的潜力及发展进行大致的评估,可以帮助初学者选择和掌握适合自己的发展的深度学习框架。参考:《深度神经网络FPGA设计与实现》–西安电子科技大学-
2022-03-14 15:47:59
3620
原创 【OpenVINO+paddle】覆盖300多种飞桨算法-PPHub+PP2ONNX+IR部署三步走
【OpenVINO+paddle】覆盖300多种飞桨算法-PPHub+PP2ONNX+IR部署三步走这篇博客我提供了一个全新的openvino部署思路,并且通过这个思路您可以直接调用300多种飞桨算法系统地了解他们,并在在openvino的部署。同时您还可以部署的算子有哪些可以用的哪些是不能用的。在这篇博客中我将演示从以mobilenet_v3_large_imagenet_ssld这个例子来演示如何部署。所有代码和资源都挂载到aistudio的平台上,您可以直接打开下面的链接直接运行:https:
2022-03-11 14:47:50
1021
2
原创 【OpenVINO+paddle】一切皆可二次元-CPU部署飞桨AnimeGAN实现所有照片二次元化
在这篇文章中我将小喵咪、小姐姐、钢铁侠图片二次元化,事实上你可以尝试任何一张你感兴趣的图像。在这里你将会使用到PP-AnimeGAN模型,将这个模型导出为onnx模型,然后转换为OpenVINO的IR格式,并在CPU上实现任意的图片的二次元化。
2022-03-09 14:53:42
2099
原创 训练营往期合集
钢板裂纹瑕疵检测第三期训练营(3.5~3.8):CV-语义分割应用场景:工业质检第0天.正式任务前准备必看:https://mp.weixin.qq.com/s/PP0amkG95cO9m7i0xtzmww第1天.环境与数据准备必看:https://mp.weixin.qq.com/s/_0U8KDMfpqn_c9cT8D4qxA第2天.模型训练与校验必看:https://mp.weixin.qq.com/s/YTOsbwAMHqFvrMCvag-2Kg第3天.模型预测必看:https://mp
2022-03-08 10:04:51
2446
原创 【OpenVINO+paddle】一键完成主机OpenVINO&飞桨所有组件的环境安装配置
在这篇博客我提供了我自己集成的环境配置,无需安装任何软件,几行代码一键完成OpenVINO以及飞桨所有套件。一直以来,安装OpenVINO的过程非常非常繁琐,很多时候动不动就要下载一堆软件。为了解决这个问题,我直接从底层的环境构建开始,能够让读者直接用一句代码就可以完成整个环境的配置,并通过jupyter notebook直接使用
2022-03-05 10:31:28
2559
1
原创 【openVINO+paddle】CPU部署新冠肺炎CT图像分类识别与病害分割
【openVINO+paddle】CPU部署新冠肺炎CT图像分类识别与病害分割在这个项目中是我在看到一位大佬代码生成器的项目文章时想要尝试开发的一个项目。主要是想要在飞桨上通过Cla与Seg(分类和分割)模型对CT图像进行处理,然后将他们导出onnx模型下载到自己的设备上,通过openVINO转化为IR模型后,能够在CPU上就能够实现对新冠肺炎CT图片进行处理。这里我会提供所有的数据和已经跑通的代码,如果中间有一些不会的地方可以看下这期间参考的一些大佬项目与技术文档。https://aistudio
2022-03-04 20:02:35
3563
原创 智能交通组合拳--飞桨实现车辆类别/车牌/车速检测、跨境头跟踪、车流密度检测、逆行检测
1、车流量+拥堵情况2、车牌检测3、车辆种类逆行4、车辆视觉测速
2022-03-04 16:02:32
5575
原创 百度BML&飞桨训练营(十三)花样滑冰选手骨骼点识别--AGCN&STGCN
花样滑冰选手骨骼点识别(AGCN&STGCN)紧跟着冬奥会的一个视觉项目,非常有意思。可以检测选手的骨骼点识别。人体运动分析是近几年许多领域研究的热点问题。在学科的交叉研究上,人体运动分析涉及到计算机科学、运动人体科学、环境行为学和材料科学等。随着研究的深入以及计算机视觉、5G通信的飞速发展,人体运动分析技术已应用于自动驾驶、影视创作、安防异常事件监测和体育竞技分析、康复等实际场景人体运动分析已成为人工智能领域研究的前沿课题。目前的研究数据普遍缺少细粒度语义信息,导致现存的分割或识别
2022-02-23 14:36:24
1125
原创 1块钱30分钟利用华为云服务器配置一台云电脑并搭建一个简易网站(步步截图较详细)
在这篇文章你将会接触到:熟悉华为云的云产品对应价位以及如何配置好适合自己的情况的产品和基本产品操作流程。步步截图的服务器云电脑搭建,利用云服务器搭建一个简单的网站。
2022-02-16 21:21:53
3021
原创 【openVINO+paddle】基于 Paddle2ONNX实现Paddle-Detection/OCR/Seg导出
【openVINO+paddle】基于 Paddle2ONNX实现Paddle-Detection/OCR/Seg导出这篇文章所有的代码我都已经跑通。我会提供所有的源代码和数据集和相关文件,我这个用的环境是BML codeLAB ,他的文件路径是/home/work/而不是aistudio的/home/aistudio/这一个路径,所以请小伙伴们开发时注意下路径转化问题,有任何不懂或者出错的地方,欢迎到CSDN搜索翼达口香糖这个账号私聊我。我已经把代码和数据都上传到aistudio ,想要对照结果或者体
2022-02-05 15:34:26
2115
原创 一文解锁华为云新技能-AIOT开发全流程【设备接入-ESP端侧数据收集[MQTT]-实时数据分析】(步步截图较详细)
一文解锁华为云新技能-AIOT开发全流程【设备接入-ESP端侧数据收集[MQTT]-实时数据分析】(步步截图较详细)
2022-01-30 00:08:45
1380
原创 七万字详解paddle-openVINO【CPU】-从环境配置-模型部署全流程
七万字详解paddle-openVINO【CPU】-从环境配置-模型部署全流程在这篇文章你将会接触到:paddle-openvino框架、两者在Linux、windows多种配置方式、使用LabelMe对paddle数据的标注转换与划分、图像分类/目标检测/实例分割/语义分割的数据格式、模型训练、训练参数调整、模型保存、模型压缩(裁剪量化)与模型导出(ONNX2)。你将会接触到6个实战项目:paddle(人像分割- RGB遥感影像分割-多通道遥感影像分割-地块变化检测)和paddle with open
2022-01-27 19:37:14
8921
2
原创 TF/pytorch/caffe-CV/NLP/音频-全生态CPU部署实战演示-英特尔openVINO工具套件课程总结(下)
TF-pytorch-caffe~CV/NLP/音频-全生态CPU部署实战演示-英特尔openVINO工具套件课程总结(下)在上中两篇中我们充分理解了openvino的基本原理以及其硬件基础,在这篇博客中主要通过演示在Linux系统下实现多个实例模型的演示,操作语言选择熟悉的python语言(C++、java都可以官方技术文档中找到)这次将会仅仅使用到CPU,不需要使用GPU,就可以实现模型部署与使用。如果你想要在自己的电脑上运行这些程序,就需要在linux的环境下安装好openvino,下面是官方的教
2022-01-26 16:12:37
1329
原创 步步截图,超详细的深度学习环境配置(下)openVINO-LabelIMG-tensorflow detection API
步步截图,超详细的深度学习环境配置(下)openVINO- tensorflow detection API-LabellingopenVINO安装下面是官网的地址https://software.intel.com/en-us/openvino-toolkit在这里,你点击下载以后,你会进入到一个配置的页面.可以根据你的硬件条件去选择,这里我们用的环境是window系统的线下版本,然后填下你的个人资料就可以下载了这里直接选择默认的地址,后面会方便找。我们开始我们的安装整体都不动,默
2022-01-19 19:59:34
1428
原创 步步截图,超详细的深度学习环境配置(上)python-anaconda-Vscode-tensorflow
步步截图,超详细的深度学习环境配置(上)python-anaconda-Vscode-tensorflow基本上每一个初学者都会接触到各种各样配置环境的问题。今天看了一本书–“深度学习图像识别技术基于tensorflow object detection API open window工具套件”一书中,有一个不错的一种集成化的配置方案,把整个配置流程的难度降到了最低。Python安装里面最难的一个地方就是在于这个各种和环境的一些配置,所以这里直接采用anaconda的配置方法。用anaconda去配置
2022-01-19 18:48:04
1197
原创 百度BML-飞桨服务器以及Jetson nano部署实战案例(下)
百度BML-飞桨服务器以及Jetson nano部署实战案例(下)这次我们直接把模型部署到公有云和Jetson nano的实战训练,首先说下用的是公有云部署,然后再说下Jetson nano。首先说下这里采用的百度的公有的服务器的部署,因为我自己是没买服务器资源的,所以这里就使用百度的公有云。第二个是自己的端侧设备部署,可以有很多的选择,百度自己家的硬件会好部署一些,但是这里还是考虑到大多数人都是使用自己的一些端侧设备,所以这次就拿Jetson nano来部署为案例。在这里具体模型怎么训练、数据怎么标
2022-01-18 19:02:34
2062
2
原创 体系化数学讲解及Excel实现NN神经网络全流程
体系化数学讲解及Excel实现NN神经网络全流程当下神经网络及其应用都非常受欢迎,但是大多数人用的神经网络多是一个库或者选择一段开源代码,对于其中的数学基础以及其中的架构知之甚少,这次我们就通过讲解所有神经网络的数学公式以及通过数学公式在办公软件Excel上实现对数字的识别。讲解数学公式部分我就不用latex来打,因为时间实在不够,全程采用书写,Excel文件会上传到博客资源中提供下载。我们这次的讲解的角度主要源自“深度学习的数学”一书,下面是这本书的第一章的链接,感兴趣的伙伴可以买来学习。第一章内
2022-01-17 18:22:34
1235
1
原创 多硬件异构&从硬件层到算法层评估提升模型性能-英特尔openVINO工具套件课程总结(中)
多硬件异构&从硬件层到算法层评估提升模型性能-英特尔openVINO工具套件课程总结(中)这次将会带来一些很硬的东西,如何从硬件底层到传输层到算法层提升模型性能、GPU、CPU、VPU、FPGA的异构系统、英特尔酷睿第六代Skylake架构、多设备协同工作的架构、传感器通道融合、CV、NLP、神经网络处理等下面是课程的链接,我觉得他们讲的非常清晰,如果我写的地方有不清楚的部分可以看一下他们的那个课程:http://edu.csdn.net/course/detail/32064?utm_sou
2022-01-15 10:40:00
1453
原创 百度BML&飞桨训练营(十二)【paddle- NLP】评论观点抽取和属性级情感分析
百度BML&飞桨训练营(十二)【paddle- NLP】评论观点抽取和属性级情感分析点击Notebook,创建“NLP通用”填写任务信息下载数据集和相关依赖文件至本地下载链接:https://aistudio.baidu.com/aistudio/datasetdetail/1250821.找到创建的Notebook任务,点击配置开发语言:Python3.7AI框架:PaddlePaddle2.0.0资源规格:GPU V1002.打开Notebook3.创建一个Note
2022-01-14 09:37:48
1073
2
原创 没有GPU仅用CPU也可以玩转AI?英特尔openVINO工具套件课程总结(上)
不用GPU仅用CPU可以玩转AI?英特尔openVINO工具套件课程总结(上)首先介绍一下这个课程,也是我最近发现的一个好课。直接交你如何在自己电脑上跑视觉模型,仅仅用一块CPU,不用GPU,也不同任何的硬件加速就可以实现一些很好的模型。下面是课程的链接,我觉得他们讲的非常清晰,如果我写的地方有不清楚的部分可以看一下他们的那个课程,全免费的:http://edu.csdn.net/course/detail/27685?utm_source=coderacademy基础视觉图像知识首先呀我们必须明
2022-01-13 14:00:56
3124
3
原创 百度飞桨部署全流程讲解以及Jetson nano部署实战案例(上)
百度飞桨部署全流程讲解以及Jetson nano部署实战案例(上)这个是我看了反复看了四五遍BML的培训的部署课程写的一个理解,可能有理解不到位的地方可以看下原B站视频,讲的也很好。https://www.bilibili.com/video/BV1YQ4y127rB?from=search&seid=4040677619604070442&spm_id_from=333.337.0.0这里是由于内容体系太复杂太多了,所以分为上下两个,第一部分写下整个飞桨的部署推理理论的核心架构,第二
2022-01-13 00:56:00
2603
原创 计算机二三四级软考、志愿者实习、软著外观实用发明专利、著作、科研论文EI/SCI在大学期间野蛮成长方式
大学期间计算机二三四级软考、志愿者实习、外观使用发明专利、科研论文EI/SCI、著作的野蛮成长方式真的有很长时间没有更新博文了,在这里正逢有一定的小时间可以让我写一些文字来分享一下大学常见的经历。这上面的东西都是不错的,很多可能连研究生都会在弄,那么这次我就逐个来分享一下,写一些自己的感受和精力。计算机二、三、四级首先计算机二三四级应该是大学期间最常见的一个考试了,很多同学都会报考一个计算机二级。我现在也是处在四级网络工程师这个阶段。首先来介绍一下这个吧,首先一个问题是计算机等级考试的水准到底如何。官
2022-01-12 20:52:08
546
原创 百度BML&飞桨训练营(十一)paddle-OCR车牌识别
百度BML&飞桨训练营(十一)paddle-OCR车牌识别第一步:配置Notebook1.创建Notebook任务,点击配置开发语言:Python3.7AI框架:PaddlePaddle2.0.0资源规格:GPU V1002.打开Notebook3.创建一个Notebook,选择Python3第二步:上传数据集至Notebook1.下载数据集至本地https://aistudio.baidu.com/aistudio/datasetdetail/1236862.上传数据
2022-01-01 00:59:56
1065
2
原创 百度BML&飞桨训练营(十)面部表情迁移PaddleGAN--蒙娜丽莎在微笑
百度BML&飞桨训练营(十)面部表情迁移PaddleGAN–蒙娜丽莎在微笑(1)、蒙娜丽莎动态表情迁移第一步:配置Notebook1.创建Notebook任务,点击配置开发语言:Python3.7AI框架:PaddlePaddle2.0.0资源规格:GPU V1002.打开Notebook3.创建一个Notebook,选择Python3第二步:环境配置1.升级paddlepaddle-gpu至2.2.1版本!pip install paddlepaddle-gpu==2.
2021-12-24 20:53:51
1473
原创 百度BML&飞桨训练营(九)机械臂分练物体视觉部分
百度BML、飞桨训练营(九)机械臂分练物体视觉部分文章相关内容资料已经取得百度BML允许,仅用于交流学习,请不要用于商业传播。1.创建Notebook任务,点击配置开发语言:Python3.7AI框架:PaddlePaddle2.0.0资源规格:GPU V1002.打开Notebook3.上传本次Notebook操作模型若没来得及下载,请点击链接下载:https://aistudio.baidu.com/aistudio/datasetdetail/121560第二步:环境准备1.
2021-12-17 15:39:49
531
1
原创 百度BML&飞桨训练营(八)工业计量计读表
百度BML、飞桨训练营(八)工业计量计读表文章相关内容资料已经取得百度BML允许,仅用于交流学习,请不要用于商业传播。这一期主要通过视觉上物体检测和图像分割将工业中常见的计量表读取准确的数据。第一步:进入BML主页,点击立即使用????:https://ai.baidu.com/bml/step2:点击Notebook,创建“通用任务”step3:填写任务信息第二步:下载任务操作模板下载链接:https://aistudio.baidu.com/aistudio/datasetdet
2021-12-10 17:38:04
1264
原创 百度BML&飞桨训练营(七)跨境头车流量密度统计-- PP-tracking
百度BML、飞桨训练营(七)跨境头车流量密度统计-- PP-tracking文章相关内容资料已经取得百度BML允许,仅用于交流学习,请不要用于商业传播。跨镜头多目标跟踪是对同一场景下的不同摄像头拍摄的视频进行多目标跟踪,是监控视频领域一个非常重要的研究课题。相较于单镜头跟踪,跨镜跟踪将不同镜头获取到的跟踪轨迹进行融合,得到跨镜跟踪的输出轨迹。PP-Tracking选用DeepSORT方案实现跨镜跟踪,为了达到实时性选用了PaddleDetection自研的PP-YOLOv2和PP-PicoDet作为检测
2021-12-07 10:14:32
1056
14
原创 百度BML&飞桨训练营(六)公共场所火焰烟雾检测--PP-YOLOv2算法
百度BML&飞桨训练营(六)公共场所火焰烟雾检测文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。这一期继续讲解视觉在现实场景中的应用,PP-YOLOv2算法在火焰烟雾识别。.下载操作模板与数据集(必看)请提前准备好!链接:https://aistudio.baidu.com/aistudio/datasetdetail/1179151.进入BML主页,点击立即使用:https://ai.baidu.com/bml/2.点击左侧“模型训练”下的“Noteb
2021-12-06 19:44:41
1474
11
原创 百度BML&飞桨训练营(五)商品种类识别
百度BML&飞桨训练营(五)商品种类识别文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。这一期继续来手把手教学如何进行视觉上对商品饮料分类。下载商品识别模板(必看)请在开始任务前,下载以下文件至本地https://aistudio.baidu.com/aistudio/datasetdetail/114961进入BML平台,点击立即使用:https://ai.baidu.com/bml/图片第一步:新建Notebook并配置1.应用场景选择:视频监控
2021-12-06 19:32:43
1023
原创 百度BML&飞桨训练营(四)人流密度检测
百度BML&飞桨训练营(四)人流密度检测文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。下载数据集请在开始任务前,下载以下文件至本地1.Notebook模板+测试数据集下载(视频demo)https://aistudio.baidu.com/aistudio/datasetdetail/1146962.PaddleDetection下载链接(若Github无法进入,则选择Gitee链接)Github:https://github.com/PaddlePa
2021-12-05 20:36:28
1153
1
原创 百度BML&飞桨训练营(三)CV之汽车识别分类
百度BML&飞桨训练营(三)CV之汽车识别分类文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。这一次直接来上手简单的CV项目–汽车识别。下载数据集请在开始任务前,下载以下数据集于本地。训练数据集(用于模型训练):https://aistudio.baidu.com/aistudio/datasetdetail/113647评测数据集(用于模型评估):https://aistudio.baidu.com/aistudio/datasetdetail/1136
2021-12-05 20:20:35
1153
原创 百度BML&飞桨训练营(二)基本流程熟悉NLP简单模型训练
百度BML&飞桨训练营(二)基本流程熟悉NLP简单模型训练基本流程熟悉文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。机器学习几乎都是一下这个流程数据获取以及标准–训练数据–建立模型–评估模型–应用部署调用模型接下里就按照用一个小项目正常走一遍:1.搜索ai.baidu.com2.点击BML全功能AI开发平台3.点击立即使用4.左边点击Notebook,然后点击立即创建。5.创建名称和描述,类型选择"文本分类-单文本单标签",场景选择"其他"。
2021-12-05 20:00:59
1883
1
原创 百度BML&飞桨训练营(一)平台以及框架整体介绍
百度BML&飞桨训练营(一)平台以及框架整体介绍BML简介文章相关内容资料已经取得百度BML允许,仅用与交流学习,请不要用于商业传播。BML按照最简单的定义来说,就是一个平台,一个提供既定模型和算力资源的平台。如果平时自己不想配显卡,如果不是很懂代码却想开发机器学习模型也用这个。包括CV、NLP、数据等场景的模型都有,提供大量的傻瓜式操作以及全智能标注的渠道,让人工智能变得触手可及。(BML 全功能AI开发平台是一个面向企业和个人开发者的机器学习集成开发环境,为经典机器学习和深度学习提供了从
2021-12-05 19:41:23
1559
原创 基于AIOT的智能家居系统
基于AIOT的智能家居系统1、总体框架AIOT是2017年在小米开发者大会上提出的一个概念,主要指把物联网和人工智能联系起来产生更加深远的影响力,其中AIOT在智能家居的应用是各大厂商都角逐的一块重要领域,其中不乏小米腾讯阿里华为这类的巨头企业,同时格力海尔西门子这些传统的家电供应商;也在开发其应用。一般业界觉得比较好的一个分布图是下图,是将AIOT分为三个层面,分别是设备层、网络层和应用层。在这次萌芽杯的项目中我们也是根据这个结构来建立。这里我们建立的整体是采用上位机和下位机的思想构建的。首先是上
2021-10-26 14:48:54
1696
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人