matlab 定义一个有自变量的方程_常微分方程:(第四章) 高阶微分方程

参考《常微分方程》第三版(王高雄)

常微分方程王高雄 第四章 高阶微分方程_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili​www.bilibili.com
f20e13e3527f9b81b0e56cdbeac376d1.png

对于高阶微分方程,线性部分见4、5章,非线性部分见6章。

4.1 线性微分方程的一般理论

定义:线性微分方程分为非齐次微分方程和齐次微分方程

n阶非齐次微分方程:

8694bb0850520622b5d81983c0f88100.png

n阶齐次微分方程:

44b0a0dfdbe7538ea3568b1cf6c50eef.png

其中系数及f(t)为闭区间[a,b]上的连续函数。


一.首先引进一些本章常用到的定义:

1.朗斯基行列式(p122)

34aa92682b21606ac31542567d2007c8.png

2.函数的线性相关&线性无关

a5278153a734825dfc602ef4123c7448.png

3.基本解组(p126)

2f2678bf0a8e8c9eb15de25dcd9f5e82.png

二.齐次线性方程基本性质

a)存在唯一性定理

5e5bb220dbdec87e5ed323f74bcd891a.png

b)叠加原理

bc0191a7526986c36760022a885c78fb.png

c) 函数线性相关性与朗斯基行列式的关系

9650d93a9bf444f28009af566e5c0060.png

d)方程解(函数)线性无关,则朗斯基行列式在区间上的任何一点都不为0

5ca7b5675eea624f49b67791c070c106.png

根据定理3和定理4可以知道,由n阶齐次线性微分方程(4.2)的n个解构成的朗斯基行列式或者恒等于零,或者在方程的系数为连续的区间内处处不等于零

e)通解结构定理

39a7cbfbe3481ed4e889595e3313acbd.png

三.非齐次线性微分方程的基本性质及常数变易法

a)齐次线性微分方程与非齐次线性微分方程解之间的关系

39a7cbfbe3481ed4e889595e3313acbd.png

fecefa8f51b3e9c69903ef265aebe290.png

b)常数变易法

设齐次线性微分方程的基本解组与通解如下:

ec5bbf70e871cdaae8bf9f64d5399958.png

则根据常数变易原理,可设非齐次线性微分方程的通解为:

ddf649bf953ccf0cc81870381e6b3fc8.png

则关键是确定

,最后得到方程的解如下形式:

735365390fc3577faac562f7020e958d.png

具体证明及一个例子如下:

6806032a2c04bb4757d8598700e74a3f.png

27648d18a5ff0c9224b2b0104faee1af.png

例子:

727d5d2e6cfc0897a2ac0dd85d9f0027.png

4.2 常系数线性微分方程的解法

事实上,对于一般的线性微分方程是没有普遍的解法的.本节介绍求解问题能够彻底解决的一类方程——常系数线性微分方程及可以化为这一类型的方程.我们将看到,为了求得常系数齐次线性微分方程的通解,只须解一个代数方程而不必通过积分运算.对于某些特殊的非齐次线性微分方程也可以通过代数运算和微分运算求得它的通解,我们一定要记住常系数线性微分方程固有的这种简单特性.

讨论常系数线性微分方程的解法时,需要涉及实变量的复值函数及复指数函数的问题。

4.2.1 复值函数与复值解

一.定义

a)首先给出复值函数的极限、连续、可微的概念

c699d8b18df6f30f672943aef92eccab.png

b)

的定义,其中

c699d8b18df6f30f672943aef92eccab.png

1a9ea2d944fe141cf14f95cb81384a3b.png

c)

的性质(p135)

12eb0c37def579762c3c08205ef257b5.png

5daa69b37d47bc97b097f9fc019b8cb9.png

74819d50d1249a71d33d6b8b03ef869a.png

d)方程的复值解的性质

aebcff1aaea17d89d00d38be1f074280.png

4.2.2 常系数线性微分方程和欧拉方程

一. 齐次线性微分方程

设齐次线性微分方程中所有系数都是常数,即方程有如下形式:

d6925ddc1c4af5aca4fede65b5bad047.png

由4.1的一般理论可知,为了求方程(4.19)的通解,只需要求出它的基本解组,求基本解组的一种很重要的方法—欧拉待定指数函数法特征根法

等价转换)分析可知:

为方程(4.19)的解的充要条件为
是代数方程

3dcd3c81b54c85008be28318faaa1916.png

的根。

称(4.21)为(4.19)的特征方程,它的根就称为特征根。对于特征根,下面根据不同的情形分别进行讨论:

(1)单根+实根

9cfd0db8909a50c0d424e0cb86755cfc.png

方程通解为:

07041bfd4a87d6f0a2030fbea1e469c3.png

(2)重根+实根(p140)

0480ead5f692992575ea36286f65b03a.png

(4.25)和(4.26)全体n个解构成方程(4.19)的基本解组。对所以基本解组进行系数加权即得到通解。

(3)单根+复根

1e8450554c17381f32714ddd494f8824.png

特征根为

(4)重根+复根(p141):k->2k

ffb538c798aca1ec02795d0752c2dc9c.png

二.欧拉方程(p142)

总结:欧拉方程通过自变量变换可转化为常系数齐次线性微分方程,解的求法也类似可以得到

2c2b6858ab0e6ad4f1bba9c8096d3af2.png

最后可化解为常系数齐次线性微分方程

94ba1ed893bda99e2c01c6f302096fd9.png

而由前面的特征根法可知,方程(4.30)有形如

的解,又由变换可知
,故
,这一结果可作为求解欧拉方程的解的公式,即对于欧拉方程,我们设其解为

检验:以

代入欧拉方程(4.29)【做题时直接这样替换即可】,约去因子
,就得到确定K的代数方程及实根下的m个解与复根下的2m个解。

ad5aa9c2265e4a7736f3dc01b29e3cc3.png

下面通过例6进一步理解:

c27ee984bd0c333fe26dd220415c9cb0.png

4.2.3非齐次线性微分方程-比较系数法与拉普拉斯变换

前面4.1.3介绍了非齐次线性微分方程求解的常数变易法-即在已知齐次线性微分方程解的前提下,将常数加以自变量约定为非齐次的通解,微分求和,进行化解,求出常数加自变量后的导数,进而确定出常数加自变量的函数形式。。。上述步骤求解往往比较繁琐。下面介绍当f(t)具有某些特殊形状时所适用的一些方法——比较系数法与拉普拉斯变换。它们的特点是不需通过积分而用代数方法即可求得非齐次线性微分方程的特解,即将求解微分方程的问题转化为某一个代数问题来处理,因而比较简便.

1.比较系数法

  • 类型I(p145)

f576c6251e2d7e753f4df564e2f41271.png
  • 类型II(p148)

449327b3d1242876d1abd22216d8b62e.png
  • 类型II的特殊情形(p150)

547d02edb2100d7724d1e5a12643ab01.png

2.拉普拉斯变换(p150)

20aec1c4c8a3233a16490c9f672f703a.png

2847e27a7ae0d264181f8340ba28c06e.png

4.3 高阶微分方程的降阶和幂级数解法

对于n阶微分方程

56933fa7a6be194bc179cbcd395e4f30.png

4.3.1 可降阶的一些方程类型

下面讨论三类特殊方程的降阶问题:

1.方程不显含未知函数(p166)

612a028d80d00ae51549b1359c6824f3.png

2.不显含自变量t的方程(p167)

7dbbc93a99fdd76f38644f150c3d7821.png

3.齐次线性微分方程

e1d9fd5600298a3a0d2f615c842a2c7e.png

4.3.2 幂级数解法(p173)

ec132fef152eb2319a6bcf063b8b2e5f.png

更多可参见书中p173

matlab解微分方程

y
  • p130例1:

c8bf4817baf7481db464676da479ea6c.png

matlab实现:

 x=dsolve('D2x+x=1/cos(t)')
 
x =
 
C10*cos(t) + log(cos(t))*cos(t) + C11*sin(t) + t*sin(t)

与书中结果一样。

  • p130例2:

b45bdb5aacc2f07c99011cc4f31cefd7.png

matlab实现:

>> x=dsolve('t*D2x-Dx=t^2')
 
x =
 
C16*t^2 + t^2*(t/3 + C15/(2*t^2))
  • p154例13

fe2ca285247a567a641e9870b67614ea.png

matlab实现:(注意数乘符号*不能省)

 x=dsolve('D2x+2*Dx+x=exp(t)','x(1)=Dx(01)=0')
 
x =
 
(t*exp(t))/2 - (exp(t)*(2*t - 1))/4 - (C30*exp(-t))/2 + C30*t*exp(-t)
 

2020.11.19

matlab中的微分方程-matlab中的微分方程.doc 1510 matlab中的微分方程 第1节  Matlab能够处理什么样的微分方程Matlab提供了解决包括解微分方程在内的各种类型问题的函数: 1. 常规微分方程(ODEs)的初始值问题 初值问题是用MATLAB ODE求解器解决的最普遍的问题。初始值问题最典型的是对非刚性度(?nonstiff)问题应用ODE45,对刚性度(?stiff)问题采用ODE15S。(对于stiffness的解释,请参照“什么是Stiffness”一节。) 2. 微分-代数方程(DAEs)的初值问题 在那些守恒定律规定一些变量之间满足常数关系领域经常遇到这类问题。Matlab 可以用ODE15S 或者 ODE23T解决索引(index)为1的DAEs。(对于索引的解释,请参阅“DAEs与他们的索引”一章。) 3. 边界值问题(BVPs) 这种通常要求微分方程在两边都具有特殊的条件组成。尽管他们通常不象IVPs那样经常遇到,但是他们也是工程应用中比较常见的问题。可以利用函数BVP4C来解决这类问题。 4. 时延微分方程(DDEs) 这类微分方程包含了独立变量的延迟。他们在生物与化学模型这类大量的应用中遇到,可以通过DDE23来解决这类问题。 5. 偏微分方程(PDEs) 采用PDEPE可以解决一维时空的抛物面与椭圆方程的初值、边界值的问题。而那些对更加多的一般的偏微分方程感兴趣的可以利用PDE工具箱。 更多的matlab的综合应用技术的信息请参阅Solution8314。 更多的有关matlab采用的各种求解器的算法的信息请查看下面的URLs: ● ODE 函数 ● BVP 函数 ● DDE 函数 ● PDE 函数 第2节 可以从什么地方获得更多的指导与附加信息?    可以从MATLAB Center、网站的新闻组、文件交换点可以获得一系列资料,可以进一步解释MATLAB解决各种方程(ODE,DAE,BVP,DDE)的求解器的算法和使用。你可以下载各种方程的文章与手册,他们通常带有大量的实例。   可以从 matlab自带的帮助文件的 Mathematics|Differential Equations下找到使用指导。   Cleve Moler的《Numerical Computing with MATLAB》的第七章详细讨论了OEDs的解法,并附带有大量的实例与简单的问题练习。    第3节 对ODE求解器的语法存在有些什么变化? 在MATLAB6.5(R13)中应用ODE求解器求解的首选语法是: [t,y]=odesolver(odefun,tspan,y0,options,parameter1,parameter2,…,parameterN); odesolver 是你采用的求解器,例如ODE45或者ODE15S。odefun是微分方程定义函数,所以odefun定义独立参数(典型的是时间t)的导数y‘ 以及y和其他的参数。在MATLAB6.5(R13)中,推荐使用函数句柄作为odefun。 例如,ode45(@xdot,tspan,y0),而不是用 ode45('xdot',tspan,y0)。 请看采用函数句柄的好处的文档: 采用函数句柄传递你定义MATLAB求解器计算的量、例如大规模矩阵或者Jacobian模式的函数。 如果你喜好采用字符串儿传递你的函数,matlab求解器将回溯匹配。 在老的matlab版本里,通过传递标志来规定求解器的状态和恰当的计算。在MATALB6.0以及其后的版本中,这就没有必要了,可以从matlab自带的文档中发现这个差别。 如果里采用的matlab的ODE求解器的老的语法,你可以看看我们FTP站点上的各种求解器的老的实例: ftp://ftp.mathworks.com/pub/doc/papers/ 前面的站点包含了BVP,DAE与DDE这三个方向的采用老的语法的实例。你可以在下面的站点中找到应用ODE45与ODE23的实例: ftp://ftp.mathworks.com/pub.mathworks/toolbox/matlab/funfun 你可以在MATLAB Center的文件交换站点查看这些例子的更新版本。 第4节  如何减小ODE的阶次? 求解一阶ODE的代码是很直接的。然而,二阶或者三阶的ODE不能够直接应用求解。你必须先将高阶的ODE改写成一阶的ODEs系统,使得它可以采用MATLAB ODE求解器。 这是一个如何将二阶微分方程改写成两个一阶微分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值