python实现逻辑回归预测_机器学习算法(一): 基于逻辑回归的分类预测

声明:本次撰写以Datawhale团队提供的学习材料以自学为主,代码为Datawhale团队提供,利用阿里云天池实验室与编辑器pycharm完成测试。

学习目标:

*了解 逻辑回归的理论

*掌握逻辑回归的sklearn 函数调用使用并将其运用到鸢尾花数据集预测

代码流程:

Part1 Demo实践Step1:库函数导入

Step2:模型训练

Step3:模型参数查看

Step4:数据和模型可视化

Step5:模型预测

Part2 基于鸢尾花(iris)数据集的逻辑回归分类实践Step1:库函数导入

Step2:数据读取/载入

Step3:数据信息简单查看

Step4:可视化描述

Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

逻辑回归原理简介:

逻辑斯蒂回归是统计学中经典的分类方法,具体的内容可以参考李航老师编著的《统计学习方法》第二版与周志华老师所著《机器学习》即西瓜书,里面有着详细的介绍。

如图3.21所示。

其中用到的逻辑斯谛函数可用python代码如下表示:import numpy as np

import matplotlib.pyplot as plt

x = np.arange(-5,5,0.01)

y = 1/(1+np.exp(-x))

plt.plot(x,y)

plt.xlabel('z')

plt.ylabel('y')

plt.grid()

plt.show()

如图所示:

Part1 Demo实践#!/usr/bin/env python

# -*- coding:utf-8 -*-

## 基础函数库

import numpy as np

## 导入画图库

import matplotlib.pyplot as plt

import seaborn as sns

## 导入逻辑回归模型函数

from sklearn.linear_model import LogisticRegression

##Demo演示LogisticRegression分类

## 构造数据集

x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])

y_label = np.array([0, 0, 0, 1, 1, 1])

## 调用逻辑回归模型

lr_clf = LogisticRegression()

## 用逻辑回归模型拟合构造的数据集

lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1*x1+w2*x2

##查看其对应模型的w

print('the weight of Logistic Regression:',lr_clf.coef_)

##查看其对应模型的w0

print('the intercept(w0) of Logistic Regression:',lr_clf.intercept_)

##the weight of Logistic Regression:[[0.73462087 0.6947908]]

##the intercept(w0) of Logistic Regression:[-0.03643213]

## 可视化构造的数据样本点

plt.figure()

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

plt.show()

# 可视化决策边界

plt.figure()

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

nx, ny = 200, 100

x_min, x_max = plt.xlim()

y_min, y_max = plt.ylim()

x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])

z_proba = z_proba[:, 1].reshape(x_grid.shape)

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

### 可视化预测新样本

plt.figure()

## new point 1

x_fearures_new1 = np.array([[0, -1]])

plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2

x_fearures_new2 = np.array([[1, 2]])

plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

# 可视化决策边界

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

### 可视化预测新样本

plt.figure()

## new point 1

x_fearures_new1 = np.array([[0, -1]])

plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 1',xy=(0,-1),xytext=(-2,0),color='blue',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## new point 2

x_fearures_new2 = np.array([[1, 2]])

plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap='viridis')

plt.annotate(s='New point 2',xy=(1,2),xytext=(-1.5,2.5),color='red',arrowprops=dict(arrowstyle='-|>',connectionstyle='arc3',color='red'))

## 训练样本

plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')

plt.title('Dataset')

# 可视化决策边界

plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors='blue')

plt.show()

出图:

可以发现训练好的回归模型将X_new1预测为了类别0(判别面左下侧),X_new2预测为了类别1(判别面右上侧)。其训练得到的逻辑回归模型的概率为0.5的判别面为上图中蓝色的线。

但是提供的代码也存在着一些小问题,比如说:import seaborn as sns

虽然导入了seaborn库,但是程序中并没有用到。3.2 基于鸢尾花(iris)数据集的逻辑回归分类实践

在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包)(但实际的代码运行过程中并不需要numpy包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

数据集如图:

## 基础函数库

import numpy as np

import pandas as pd

## 绘图函数库

import matplotlib.pyplot as plt

import seaborn as sns

##我们利用sklearn中自带的iris数据作为数据载入,并利用Pandas转化为DataFrame格式

from sklearn.datasets import load_iris

data = load_iris() # 得到数据特征

iris_target = data.target # 得到数据对应的标签

iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) # 利用Pandas转化为DataFrame格式

##利用.info()查看数据的整体信息

iris_features.info()

##

##RangeIndex:150entries,0to149

##Datacolumns(total4columns):

###ColumnNon-NullCountDtype

##----------------------------

##0sepallength(cm)150non-nullfloat64

##1sepalwidth(cm)150non-nullfloat64

##2petallength(cm)150non-nullfloat64

##3petalwidth(cm)150non-nullfloat64

##dtypes:float64(4)

##memoryusage:4.8KB

##进行简单的数据查看,我们可以利用.head()头部.tail()尾部

iris_features.head()

##其对应的类别标签为,其中0,1,2分别代表'setosa','versicolor','virginica'三种不同花的类别

iris_target

##array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

##0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

##0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

##1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

##1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,

##2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

##2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2])

##利用value_counts函数查看每个类别数量

pd.Series(iris_target).value_counts()

##2 50

##1 50

##0 50

##dtype:int64

##利用value_counts函数查看每个类别数量

pd.Series(iris_target).value_counts()

##2 50

##1 50

##0 50

##dtype:int64

## 合并标签和特征信息

iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改

iris_all['target'] = iris_target

## 特征与标签组合的散点可视化

sns.pairplot(data=iris_all, diag_kind='hist', hue='target')

plt.show()

for col in iris_features.columns:

sns.boxplot(x='target', y=col, saturation=0.5,

palette='pastel', data=iris_all)

plt.title(col)

plt.show()

# 选取其前三个特征绘制三维散点图

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target'] == 0].values

iris_all_class1 = iris_all[iris_all['target'] == 1].values

iris_all_class2 = iris_all[iris_all['target'] == 2].values

# 'setosa'(0), 'versicolor'(1), 'virginica'(2)

ax.scatter(iris_all_class0[:, 0], iris_all_class0[:, 1], iris_all_class0[:, 2], label='setosa')

ax.scatter(iris_all_class1[:, 0], iris_all_class1[:, 1], iris_all_class1[:, 2], label='versicolor')

ax.scatter(iris_all_class2[:, 0], iris_all_class2[:, 1], iris_all_class2[:, 2], label='virginica')

plt.legend()

plt.show()

##为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。

from sklearn.model_selection import train_test_split

##选择其类别为0和1的样本(不包括类别为2的样本)

iris_features_part = iris_features.iloc[:100]

iris_target_part = iris_target[:100]

##测试集大小为20%,80%/20%分

x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size=0.2,

random_state=2020)

##从sklearn中导入逻辑回归模型

from sklearn.linear_model import LogisticRegression

##定义逻辑回归模型

clf = LogisticRegression(random_state=0, solver='lbfgs')

##在训练集上训练逻辑回归模型

clf.fit(x_train, y_train)

##查看其对应的w

print('the weight of Logistic Regression:', clf.coef_)

##查看其对应的w0

print('the intercept(w0) of Logistic Regression:', clf.intercept_)

##在训练集和测试集上分布利用训练好的模型进行预测

train_predict = clf.predict(x_train)

test_predict = clf.predict(x_test)

from sklearn import metrics

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果

print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_train, train_predict))

print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_test, test_predict))

##查看混淆矩阵(预测值和真实值的各类情况统计矩阵)

confusion_matrix_result = metrics.confusion_matrix(test_predict, y_test)

print('The confusion matrix result:\n', confusion_matrix_result)

##利用热力图对于结果进行可视化

plt.figure(figsize=(8, 6))

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

plt.xlabel('Predictedlabels')

plt.ylabel('Truelabels')

plt.show()

##The accuracy of the Logistic Regressionis:1.0

##The accuracy of the Logistic Regressionis:1.0

##The confusion matrix result:

##[[9 0]

##[0 11]]

##测试集大小为20%,80%/20%分

x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size=0.2, random_state=2020)

##定义逻辑回归模型

clf = LogisticRegression(random_state=0, solver='lbfgs')

##在训练集上训练逻辑回归模型

clf.fit(x_train, y_train)

##在训练集上训练逻辑回归模型

clf.fit(x_train, y_train)

##查看其对应的w

print('the weight of Logistic Regression:\n', clf.coef_)

##查看其对应的w0

print('the intercept(w0) of Logistic Regression:\n', clf.intercept_)

##由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类

##在训练集和测试集上分布利用训练好的模型进行预测

train_predict = clf.predict(x_train)

test_predict = clf.predict(x_test)

##由于逻辑回归模型是概率预测模型(前文介绍的p=p(y=1|x,\theta)),所有我们可以利用predict_proba函数预测其概率

train_predict_proba = clf.predict_proba(x_train)

test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n', test_predict_proba)

##其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

##利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果

print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_train, train_predict))

print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(y_test, test_predict))

##查看混淆矩阵

confusion_matrix_result = metrics.confusion_matrix(test_predict, y_test)

print('The confusion matrix result:\n', confusion_matrix_result)

##利用热力图对于结果进行可视化

plt.figure(figsize=(8, 6))

sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')

plt.xlabel('Predicted labels')

plt.ylabel('True labels')

plt.show()

##The confusion matrix result:

##[[10 0 0]

##[0 8 2]

##[0 2 8]]

出图:

从上图可以发现,在2D情况下不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。

利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

我们可以发现其准确度为1,代表所有的样本都预测正确了。

[1] 周志华,机器学习

[1] 李航,统计学习方法(第二版)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值