自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(55)
  • 资源 (2)
  • 收藏
  • 关注

原创 HTTP协议知识点(二)

HTTP协议知识点二

2022-10-19 16:50:43 653 1

原创 HTTP协议知识点(一)

HTTP协议知识点介绍

2022-10-18 16:11:38 825

原创 Linux指令-文件目录篇

入门级Linux指令教学

2022-10-07 15:52:20 595

原创 数值计算(九)——线性代数方程组求解(一)高斯消元法

线性方程组求解许多物理问题的数学模型最终都要归结为一个求解线性代数方程组的问题,因此掌握快速准确的求解线性代数方程组是极具必要性的,线性代数方程组的求解一般分为两大类别,直接求解和迭代求解两种方式,直接法是指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,迭代法则是采取逐步逼近的方式,即从一个初始近似解出发,按某种迭代格式,逐步地向前推进,使其近似解逐步接近精确解,直到满足精度要求为止。这时候长得比较帅的读者就会有疑问了,既然有直接求解方式,那为何还有搞一个迭代求解,求出来的结果还不

2022-03-30 23:50:03 2570

原创 负载均衡的简单理解

简谈负载均衡的历史背景,实现策略,作用范围,常用算法

2022-03-30 23:49:02 791

原创 数值计算(八)——数值积分与数值微分(2)

复化求积公式上一节中讲到牛顿-柯特斯公式有一个缺陷,就是当使用高阶牛顿-柯特斯公式时,计算会变得不稳定,为了解决此问题,提高定积分的求积精度,一个方法就是把整个积分区间分为若干个子区间(通常是等分),再在每个子区间上采用低阶求积公式,这样使整个区间的积分获得较高的精度,也就是我们所说的复化求积公式。梯形复化求积公式:将积分区间[a,b][a,b][a,b]等分为nnn等份,xk=a+kh,h=b−ah,k=0,1,...,nx_k=a+kh,h=\frac{b-a}{h},k=0,1,...,nxk​=

2021-12-24 11:32:35 1072

原创 数值计算(七)——数值积分与数值积分(一)

在高数中我们知道Newton−Leibniz公式Newton-Leibniz公式Newton−Leibniz公式 ∫axf(t)dt=F(x)−F(a)\mathop{ \int }\nolimits_{{a}}^{{x}}f{ \left( {t} \right) } \text{d} t=F(x)-F(a)∫ax​f(t)dt=F(x)−F(a),表面上感觉所有的积分任务都可以被解决了,但实际应用中却是令人失望的,往往原函数没法直接求出,甚至是没有简单的原函数表达。由于这种情况的存在,因此必须考虑一种定

2021-12-23 21:45:48 1320

原创 数值计算(六)——函数逼近 (2)正交多项式多项式和最小二乘法

正交多项式和最小二乘法拟合

2021-12-22 22:14:09 6866

原创 数值计算(五)——函数逼近一致逼近多项式(1)

最佳一致逼近多项式

2021-12-21 19:18:26 4054

原创 数值计算(四)——插值法(3)Hermite插值法(补充)

Newton形式下的Hermite插值多项式

2021-12-19 17:34:56 2115

原创 数值计算(四)——插值法(3)Hermite插值法

Lagrange和Newton插值法都要求与被插值函数在插值节点上的函数值相等,现在如果再将要求收敛一下,还要求在节点上它们的一阶导数甚至高阶导数也相等呢?这时我们该怎么处理这类问题嘞?所以此时我们引入了今天的主题Hermite插值法。

2021-12-19 16:14:42 8532 1

原创 数值计算(三)-插值法(2)牛顿插值法

拉格朗日插值法每当节点增加或者减少时,其对应的插值基函数都是需要重新构造,所以在实际计算时非常不方便,因此出现了一种新的插值法:Newton插值法。

2021-12-18 21:30:40 3926

原创 数值计算(二)——插值计算(1)拉格朗日插值法

插值问题设函数fff定义在[a,b][a,b][a,b]上,设x1,x2,...,xn∈[a,b]x_1,x_2,...,x_n\in[a,b]x1​,x2​,...,xn​∈[a,b]是n+1n+1n+1个相异节点,令yi=f(xi),i=0,1,...,ny_i=f(x_i),i=0,1,...,nyi​=f(xi​),i=0,1,...,n插值法就是构造一个便于计算的简单函数φ\varphiφ来近似地替代fff,并满足:φ(xi)=f(xi),i=0,1,...,n\varphi(x_i)=f(

2021-12-17 20:18:22 2629

原创 数值计算(一):引论

因为笔者最近在复习数值计算,所以开一个数值计算的版块数值计算:为数学的一个分支,是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科。它以数字计算机求解数学问题的理论和方法为研究对象,为计算数学的主体部分。主要内容有:线性方程组的求解,如直接求法,迭代求法,非线性方程组和方程的数值求解方式,矩阵特征值问题的数值计算,插值法,函数逼近。数值积分和数值微分以及常微分方程初值问题的数值解法几大版块。首先介绍几个概念:误差误差主要分为四大类:输入数据的误差,舍入误差,截断误差,在计算过程中产生

2021-12-17 16:26:15 924

原创 LeetCode 391:完美矩形

LeetCode 391:完美矩形题目给你一个数组 rectangles ,其中 rectangles[i] = [xi, yi, ai, bi] 表示一个坐标轴平行的矩形。这个矩形的左下顶点是 (xi, yi) ,右上顶点是 (ai, bi) 。如果所有矩形一起精确覆盖了某个矩形区域,则返回 true ;否则,返回 false解题思路精准覆盖的所代表的意义:(1)矩形区域中不能有空缺,即矩形区域的面积等于所有矩形的面积之和;(2)矩形区域中不能有相交区域。那么难点在于怎么判断没有相交

2021-11-20 17:29:52 231

原创 何凯明最新一作:Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners何凯明大神最新一作,mask输入图像的随机patch,并重建移除的像素。主要提出两点:1.提出一种非对称的编码器-解码器2.mask高比例的输入图像patch将变成一个不错且有意义的自监督任务摘要本文表明,掩码自编码器 (MAE) 是用于计算机视觉的可扩展自监督学习器。 我们的 MAE 方法很简单:我们屏蔽输入图像的随机块并重建丢失的像素。 它基于两个核心设计。 首先,我们开发了不对称编码器 -

2021-11-19 17:26:21 4702

原创 leetcode1218:最长定差子序列

leetcode1218:最长定差子序列思路:动态规划我们从左往右遍历arr,并计算出以arr[i] 为结尾的最长的等差子序列的长度,取所有长度的最大值,即为答案,使用dp[i]表示arr[i]为结尾的最长的等差子序列的长度,我们可以在 arr[i] 左侧找到满足 arr[j]=arr[i]−d 的元素,将 arr[i] 加到以arr[j] 为结尾的最长的等差子序列的末尾,这样可以递推地从dp[j] 计算出 dp[i]。由于我们是从左往右遍历arr 的,对于两个相同的元素,下标较大的元素对应的dp

2021-11-05 19:22:36 128

原创 ICCV2021 Learning Spatio-Temporal Transformer for Visual Tracking

ICCV2021 Learning Spatio-Temporal Transformer for Visual Tracking论文实现:学习用于视觉跟踪的时空转换器摘要在本文中,我们提出了一种以编码器-解码器转换器为关键组件的新跟踪架构。 编码器对目标对象和搜索区域之间的全局时空特征依赖性进行建模,而解码器学习查询嵌入来预测目标对象的空间位置。 我们的方法将对象跟踪作为一个直接的边界框预测问题,而不使用任何提议或预定义的锚点。 使用编码器-解码器转换器,对象的预测仅使用简单的全卷积网络,该网络直

2021-10-18 16:08:06 2571

原创 2021CVPR Learning a Proposal Classifier for Multiple Object Tracking

Learning a Proposal Classifier for Multiple Object Tracking(学习用于多目标跟踪的建议分类器)项目开源地址:LPC_MOT多目标跟踪(MOT)的最新趋势是利用深度学习来提高跟踪性能。然而,以端到端方式解决数据关联问题并非易事。在本文中,我们提出了一种新的基于提议的可学习框架,将MOT建模为提议生成、提议评分和亲和图上的轨迹推理范式。该框架类似于两阶段目标检测器Faster RCNN,可以以数据驱动的方式解决MOT问题。对于建议生成,我们提出了一

2021-10-15 21:23:51 1126

原创 CVPR:Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking

2021CVPR MOT方向Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking(面向实时多目标跟踪的多航迹融合判别外观建模)摘要在多目标跟踪中,跟踪器在其内存中维护场景中每个对象的外观和运动信息。该内存用于查找轨迹和检测之间的匹配,并根据匹配结果进行更新。许多方法孤立地对每个目标进行建模,并且缺乏使用场景中的所有目标来联合更新内存的能力。当场景中有相似的物体时,

2021-10-08 21:33:16 720

原创 2021CVPR A Benchmark for Generic Multiple Object Tracking

2021CVPR A Benchmark for Generic Multiple Object Tracking项目开源地址:GMOT-40 A Benchmark for Generic Multiple Object Tracking

2021-09-27 21:40:38 569

原创 2021CVPR野外视频分割:Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

2021CVPR Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild项目开源地址:Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild摘要本文提出了一种野外进行交互式视频对象分割的框架用户可以通过该框架迭代地选择一些帧进行注释,然后基于用户注释,分割算法细化掩码。曾经的交互式VO

2021-09-24 20:44:36 571

原创 【2021】牛客模考(五模)编程题集合

【2021】牛客模考(五模)编程题集合第一题

2021-09-24 09:35:52 435

原创 2021CVPR多目标检测:Multiple Object Tracking with Correlation Learning

论文分享2021CVPR基于相关学习的多目标检测:Multiple Object Tracking with Correlation Learning摘要当前卷积网络通过学习检测和外观特征,极大的提高了多目标跟踪的性能,但是由于卷积网络本身的局限性,无法有效的获得空间和时间的长期依赖关系,基于空间布局,作者提出了利用局部相关模块来建模目标与其周围环境之间的拓扑关系,用来加强模型在拥挤场景中的识别能力,具体的方式就是建立每个空间位置与其环境的密集对应关系,并通过自我监督学习明确地约束相关体积,现有的方式

2021-09-22 22:24:01 4391 2

原创 TensorFlow创建模拟数据集

创建带有迭代值且支持乱序功能的模拟数据集下面将从四个方面介绍生成模拟数据定义占位符建立会话并获取数据数据的可视化1. 生成模拟数据生成模拟数据首先得有一个模拟数据生成器,为使得生成器具有迭代功能,可以在定义的GenerateData函数中传入training_epochs参数。具体实现如下(生成100个数据的样本):import tensorflow as tfimport numpy as npimport matplotlib.pyplot as pltfrom skle

2021-09-07 20:00:09 983 1

原创 Pytorch之神经网络

Pytorch实现基础的神经网络使用Pytorch配合MNIST数据集实现基础的神经网络下面从四个方面实现加载数据——Data Loader建立模型,定义损失函数和优化函数训练模型测试保存模型加载数据——Data Loader要求下载训练集 MNIST,创建符合要求的DataLoader变量data_loader,同时按要求输出特定数据的维度大小和类别,使用pytorch读取训练集是非常便捷的,只需要使用到两个类:torch.utils.data.Datasettorch.ut

2021-09-06 22:20:27 1647 2

原创 保姆级教程 安装tensorflow-gpu(傻瓜级)

保姆级教程 安装tensorflow-gpu由于之前安装tensorflow时不懂,所以安装的是cpu版本的,之后再次安装了gpu版本的,但是系统还是会自动使用cpu版本的,一怒之下便把两个版本的都给卸载了。由于之前安装的时候遇到许多坑,所以我决定写个手把手教小白的教程,毕竟本人自己就是小白一个。卸载首先把自己电脑里面的tf给他卸载了。卸载方式在这个里面输入pip uninstall tensorflow就完事了安装AnacondaAnaconda官网选择自己电脑版本的下载就完事了,然后就

2021-04-21 17:16:28 385

原创 基础神经网络

神经网络构建一个最简单的包括输入层,一层隐藏层和输出层的基础神经网络模型1.准备数据,使用sklearn.datasets.make_moons这个数据集来测试:np.random.seed(1)X,Y = sklearn.datasets.make_moons(n_samples=200,noise=.2)X,Y = X.T, Y.reshape(1, Y.shape[0])m = X.shape[1] #样本个数dim = X.shape[0] #特征维度2.参数初始化def

2021-04-07 00:26:43 226

原创 python实现逻辑回归预测

逻辑回归实现逻辑回归定义:logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是

2021-04-06 01:43:08 2353

原创 每日刷题

牛客求平方根题目实现函数 int sqrt(int x).计算并返回x的平方根(向下取整)输入输出格式输入2返回值1思路题目吧这道题目划给二分题型,但是简单的直接使用二分求解感觉太捞了,经过简单的思考我发现,可以直接使用等差数列求和的方式来做,也就是反向使用等差数列求和公式codingclass Solution {public: /** * * @param x int整型 * @return int整型 */

2021-03-30 01:30:16 189

原创 2021美团校招(一)

小美的送花路线输入描述输出第一行包含一个正整数n,即花店和客户的总数。(1<=n<=30000)接下来有n-1行,每行有三个整数u,v,w,表示在u和v之间存在一条距离为w的道路。(1<=w<=1000)输出描述输入51 2 31 3 11 4 22 5 1输出10 10思路深度搜索就完事了coding#include <bits/stdc++.h>using namespace std;int main() {

2021-03-28 00:52:30 1551

原创 京东2019年春招题(前端)

京东2019年春招题最长区间思路:把字符串与自身拼接,找新字符串中的连续1的区间长度,考虑原字符串全为1或全为0的情况,coding#include<bits/stdc++.h>using namespace std;int main(){ string s,t; int n,r=0; cin>>s; t=s+s; n=t.length(); for(int i=0;i<n;i++){

2021-03-23 19:14:20 225

原创 湘大刷题笔记

湘大刷题笔记P1031 机器翻译描述小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章。这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义来替换。对于每个英文单词,软件会先在内存中查找这个单词的中文含义,如果内存中有,软件就会用它进行翻译;如果内存中没有,软件就会在外存中的词典内查找,查出单词的中文含义然后翻译,并将这个单词和译义放入内存,以备后续的查找和翻译。假设内存中有M个单元,每单元能存放一个单词和译义。每当软件将一个新单词存入内存前,如果当前内存

2021-03-19 02:30:01 352

原创 2015年中南大学复试机试

2015年中南大学复试机试第一题:好坑的电子地图题目描述:小明是今年参加复试的外校考生,他要去民主楼小礼堂签到。由于对中南大学校本部很不熟悉,小明找到了这边读书的好朋友鲁大师,不巧,鲁大师在忙着自由探索项目的结题工作,不能给他带路,只好给他发了一份半成品的电子地图。地图上只列出了校本部内的N个点,M条路,小明处于S点,民主楼小礼堂是T点。小明感谢鲁大师,当然只是在拿到地图的一瞬间,后面的情况让他知道这半成品到底有多坑。鲁大师制作的电子地图是带有语音提示功能的,但是在编号为奇数的点他要等1分钟才能告诉

2021-02-08 18:02:42 413

原创 PIPIOJ :1207 PIPI打怪

1207 PIPI打怪题目描述思路题目乍一看都没懂为啥两颗子弹就能打死一个血量12的野怪,然后仔细一想,发现这不就是一个套娃吗?出现死亡一个人就得人均扣两滴血,然后判断一下本次反弹是否出现野怪死亡,如果反弹期间也出现野怪死亡,就每只野怪再扣两滴血直到不出现野怪死亡算一颗子弹的威力,如果还有野怪存活就再来一发,直至所有野怪都被打死,所实话,这子弹挺离谱的。coding#include<bits/stdc++.h>using namespace std;typedef long

2021-02-07 18:47:15 680

原创 2014年中南大学上机复试

2014年中南大学复试机试第一题:成绩转换题目描述:某地区中考实行等级选拔制,为此需要将相应科目的卷面计分成绩转换为相应的等级。假设门课程卷面总分 120 分,根据考试情况,各等级划线情况如下:108~120 为 A;100~107 为 B;80~99 为 C;72~79 为 D;0~71 为 E;输入数据有多组,每组占一行,由一个整数组成。对于每组输入数据,输出一行。如果输入数据不在 0~120 范围内,请输出一行:“Score is error!”。输入输出格式:输入:

2021-02-06 19:22:50 291 2

原创 2013年中南大学复试机试

2013年中南大学复试机试第一题:回文串问题题目描述:“回文串”是一个正读和反读都一样的字符串,字符串由数字和小写字母组成,比如“level”或者“abcdcba”等等就是回文串。请写一个程序判断读入的字符串是否是“回文”。输入包含多个测试实例,每一行对应一个字符串,串长最多100字母。对每个字符串,输出它是第几个,如第一个输出为"case1: “;如果一个字符串是回文串,则输出"yes”,否则输出"no",在yes/no之前用一个空格。输入输出格式:输入:levelabcdeno

2021-02-04 23:29:43 244

原创 二叉树的遍历

二叉树的基础遍历算法二叉树的构建typedef char ElemType;//二叉树链式存储定义typedef struct BiNode{ ElemType data; BiNode *lchild; BiNode *rchild; //直接构建二叉树 BiNode(ElemType data, BiNode *lchild,BiNode *rchild){ this->data=data; this->lchi

2020-11-04 23:50:41 178

原创 头像动漫化

实现头像动漫化 python第一步:从百度或者腾讯提供的AI智能平台获取一个接口,也就是一个专属自己的密钥下面是百度获取这个流程:后面注册一下账号就好了第二步:安装两个模块 (base64和requests)安装模块的时候推荐镜像下载pip install -i https://pypi.tuna.tsinghua.edu.cn/simple base64pip install -i https://pypi.tuna.tsinghua.edu.cn/simple reque

2020-10-24 12:49:56 1374 2

原创 数据结构练习题----单链表篇(一)

第一题有一个带头结点的单链表L,设计一个算法使其元素递增有序思路先将链表的数据复制到数组中,然后再数组中使用八大排序中的任意一种进行排序,然后再使用尾插法插入到链表当中Void sort(LinkList &L){ LNode *p=L->next,*pre; LNode *r=p->next,* p->next = NULL; p=r; while(pre->next!=NULL&&pre->next->data<

2020-10-08 15:28:19 796

Sample.zip

java技术实现web服务器转发代理,自制UDP Ping服务。

2020-06-03

n0cv17.zip

使用Flask框架实现实时疫情信息监控,绝对好用。

2020-04-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除