python完美立方等式_LeetCode 990. 等式方程的可满足性 | Python

990. 等式方程的可满足性

题目

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。

示例 1:

输入:["a==b","b!=a"]

输出:false

解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。

示例 2:

输出:["b==a","a==b"]

输入:true

解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。

示例 3:

输入:["a==b","b==c","a==c"]

输出:true

示例 4:

输入:["a==b","b!=c","c==a"]

输出:false

示例 5:

输入:["c==c","b==d","x!=z"]

输出:true

提示:

1 <= equations.length <= 500

equations[i].length == 4

equationsi 和 equationsi 是小写字母

equationsi 要么是 '=',要么是 '!'

equationsi 是 '='

解题思路

思路:并查集

先看例 3 和 例 4。这两个例题中,所给不同部分就是数组中第二个方程式。看看例 4 中,为何返回的结果是 False?

["a==b","b!=c","c==a"]

在例 4 当中,第二个式子 b!=c,而前面的式子中 a==c 那么这里将 a 替换 b,第二个式子就变为 a!=c,但是最后的式子中 a==c 又成立,这里就明显存在冲突,所以这里结果返回 False。

在上面的例子当中,我们也可以看到,相等关系具有传递性,所有的相等变量其实是属于同一个集合。但是这里并不关心传递的距离,只关心是否连通。那么这里就考虑使用并查集来解决本问题。

这里,关于并查集设计算法具体如下:

首先构造并查集,遍历所有等式。每个等式的两个变量属于连通分量,将两者进行合并;

这里还需要再次遍历所有不等式,因为不等式的两个变量不属于同一个连通分量,这里两者不能合并,要分开查找对应的连通分量,这里有两种情况:

如果两个变量属于同个连通分量,那么就与原假设不符,存在矛盾,这里应该返回 False;

如果没有出现上面所述的矛盾,那么最终返回 True

在这里,我们可以将数组中方程式的变量当成节点,相等关系则表示两个节点的边。前面说明,相等变量属于同个连通分量,那么使用并查集来维护这个关系

具体的实现:

创建数组存储每个变量的连通分量,其中每个元素表示的是所在连通分量的父节点信息。如果父节点是自身,那么这个就是所在连通分量的根节点。

初始化的时候,将变量的父节点都指向自身。

查找操作:从当前变量的父节点往上找,直至找到根节点;

合并操作:将其中一个变量的根节点指向另外一个变量的根节点。

具体的代码实现如下。

代码实现

from typing import List

class Solution:

# 并查集类

class UnionFind(object):

def __init__(self):

'''初始化数组

'''

self.parent = list(range(26))

def find(self, index):

'''查询操作

查询直至根节点

这里使用了路径压缩

'''

# 如果父节点是自身,那么就是根节点,返回

while index!=self.parent[index]:

self.parent[index] = self.parent[self.parent[index]]

index = self.parent[index]

return index

def union(self, index1, index2):

'''合并操作

将其中一个变量的根节点指向另外一个变量的根节点

'''

root_index1 = self.find(index1)

root_index2 = self.find(index2)

self.parent[root_index1] = root_index2

def is_connected(self, index1, index2):

'''判断是否连通

'''

return self.find(index1) == self.find(index2)

def equationsPossible(self, equations: List[str]) -> bool:

uf = Solution.UnionFind()

# 第一次遍历所有等式,进行合并

for equation in equations:

if equation[1] == "=":

# 这里将变量字符转换为整数

# ord('a') 返回对应的十进制整数

index1 = ord(equation[0]) - ord('a')

index2 = ord(equation[3]) - ord('a')

uf.union(index1, index2)

# 再次遍历所有不等式,查找对应的连通分量

for equation in equations:

if equation[1] == '!':

index1 = ord(equation[0]) - ord('a')

index2 = ord(equation[3]) - ord('a')

# 如果两个变量属于同个连通分量,那就出现矛盾,返回 False

if uf.is_connected(index1, index2):

return False

# 最终没有矛盾,返回 True

return True

# equations = ["b==a","a==b"]

equations = ["a==b","b!=a"]

solution = Solution()

solution.equationsPossible(equations)

实现结果

总结

通过题中示例,我们知道等式具有传递性。但是题中只关心连通性,并不关心传递的距离,所以我们考虑使用并查集的思路来解决问题。

关于并查集的算法设计流程:

首先构造并查集,先遍历所有的等式,因为两个变量这里属于同一个连通分量,那么将其进行合并

再次遍历 所有的不等式,在这里两个变量并不属于同个连通分量,那么不能进行合并,要各自查找对应的连通分量。如果这个时候出现两个变量的连通分量相同的情况,那么这个就跟前面的预设不符,出现矛盾。返回 False

如果没有出现上面所述的矛盾,那么返回 True。

以上就是关于解决《990. 等式方程的可满足性》问题的主要内容。如果觉得写得还不错,欢迎关注。微信公众号《书所集录》同步更新,同样欢迎关注。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值