gz153016
码龄7年
  • 916,337
    被访问
  • 539
    原创
  • 3,220
    排名
  • 223
    粉丝
  • 5
    铁粉
关注
提问 私信

个人简介:格局,品味

  • 加入CSDN时间: 2015-04-20
博客简介:

君子不器

博客描述:
死搞啊,兄dei
查看详细资料
  • 4
    领奖
    总分 764 当月 2
个人成就
  • 获得514次点赞
  • 内容获得73次评论
  • 获得1,520次收藏
创作历程
  • 4篇
    2022年
  • 13篇
    2021年
  • 45篇
    2020年
  • 77篇
    2019年
  • 72篇
    2018年
  • 2篇
    2017年
  • 150篇
    2016年
  • 202篇
    2015年
成就勋章
TA的专栏
  • Mobile Edge Computing
    7篇
  • 强化学习
    15篇
  • 动态深度学习框架Pytorch
    5篇
  • 基本算法
  • 图像分类大全
    3篇
  • 机器学习实战2-15章
    5篇
  • Keras学习笔记
    8篇
  • 动手深度学习
    15篇
  • 高精度汇总
    3篇
  • TensorFlow学习笔记
    29篇
  • python语法总结
    32篇
  • 21个项目玩转深度学习
    3篇
  • 吴恩达深度学习
    6篇
  • 吴恩达机器学习
    1篇
  • LeetCode题目800
    4篇
  • acm-贪心
    4篇
  • 深度优先搜索
  • 算法-枚举
    3篇
  • 二分匹配
  • ACM模板总结
  • 深度优先遍历
    3篇
  • 数据结构NOIP
  • 模拟题
    8篇
  • phyon
    5篇
  • TensorFlow
    4篇
  • dp
    2篇
  • 落谷OJ
    1篇
  • acm
    33篇
  • JavaWeb
    26篇
  • MyLife
    10篇
  • Life
    6篇
  • Thinking Changing
    3篇
  • Andrioid
    60篇
  • My IT Dream
    2篇
  • Algorithm+Data Structure
    5篇
  • 数据库
    9篇
  • 设计模式
    2篇
  • 网站开发
    5篇
  • ASP.NET开发
    11篇
  • Linux OS操作系统
    53篇
  • J2EE-Spring框架
    3篇
  • J2EE-SpringMVC框架
    1篇
  • J2EE-Hibernate框架
    3篇
  • J2EE-MyBatis框架
    1篇
  • DB2数据库
  • Oracle Datbase
    45篇
  • ACM-递归算法
    1篇
  • 软件工程-UML
    1篇
  • Software Project
    3篇
  • BIG DATA
    2篇
  • Hadoop
    17篇
  • The road to one's deceased fat
    1篇
  • ACM following
    11篇
  • AV
  • prim
    9篇
  • Kruskal
    3篇
  • 南阳理工ACMOJ SEARCH
    8篇
  • 最短路径模板
    2篇
  • 图论总结
  • 网上书城JavaWeb项目学习
    3篇
  • 毕业前的那个凌乱的寒假-J2EE
  • Test
    1篇
  • 南阳理工oj-语言入门
    33篇
  • 童程教育时期走一波排序
    3篇
  • 图像基础分类
    2篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    语音识别机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

计算/任务卸载任务系统模型中能耗和时延计算公式系统讲解

codeimport argparsedef parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--num-ue', type=int, default=5) parser.add_argument('--F', type=int, default=5) args = parser.parse_args() return argsimport numpy as np
原创
发布博客 2022.05.12 ·
58 阅读 ·
0 点赞 ·
0 评论

python 三维数组 w4[:, 1] 取值

import numpy as npa = [1, 2, 3] ; b = [4, 5, 6]; c = [7, 8, 9] ; d = [10,11,12]# 每一页 / 每一个二维数组内容不同:w3 = np.array( [ [a,b], [a,c], [b,c], [a,d] ] )w4 = np.array( [ [a,b,d], [a,c,d], [b,c,d],[a,a,d]] )print('w3:
', w3.shape) # (4, 2, 3)print('w4:
原创
发布博客 2022.05.09 ·
225 阅读 ·
0 点赞 ·
0 评论

pandas .set_index(“TIMESTAMP“, inplace=True) 用法

# -- coding: utf-8 --import pandas as pdvehicle_data = pd.read_csv('./my_test.csv')print('self.vehicle_data:
', vehicle_data)vehicle_data.set_index("TIMESTAMP", inplace=True) #TIMESTAMP를 index로 설정 loc.[x]하면 x타임스탬프 다나옴# 将TIMESTAMP设置为index loc.[x]表示x时
原创
发布博客 2022.03.27 ·
1295 阅读 ·
0 点赞 ·
0 评论

Python 将成都进行网格化

一、读取成都的边界坐标http://datav.aliyun.com/portal/school/atlas/area_selector从.json文件中读取边界坐标。import jsonimport numpy as npf = open('./data/chengdu2.json','r', encoding='UTF-8')data = json.load(f)data_coordinates = data['features'][0]['geometry']['coordinates
原创
发布博客 2022.02.03 ·
1073 阅读 ·
0 点赞 ·
0 评论

pytorch 实现DDPG多好的代码

import torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npimport gymimport time##################### hyper parameters ####################EPISODES = 200EP_STEPS = 200LR_ACTOR = 0.001LR_CRITIC = 0.002GAMMA = 0.9TAU = 0
原创
发布博客 2021.12.08 ·
872 阅读 ·
0 点赞 ·
0 评论

linux network service not found,我自己调出来的,还有小学弟的帮忙。哈哈

/etc/init.d/networking restart/etc/init.d/networking restart/etc/init.d/networking restart/etc/init.d/networking restart/etc/init.d/network restart
原创
发布博客 2021.08.16 ·
766 阅读 ·
1 点赞 ·
0 评论

torch.nn.Linear() 理解

# -- coding: utf-8 --import torchx = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output = m(x)# (128, 20) (20, 30) -> (128, 30)print('m.weight.shape:
', m.weight.shape) # torch.Size([30, 20])print('m.bias.sh
原创
发布博客 2021.07.26 ·
113 阅读 ·
0 点赞 ·
0 评论

强化学习Double DQN (DDQN)

# -- coding: utf-8 --# 单用户import torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npimport gym# 超参数BATCH_SIZE = 32LR = 0.01 # learning rateEPSILON = 0.9 # 最优选择动作百分比GAMMA = 0.9
原创
发布博客 2021.07.26 ·
155 阅读 ·
0 点赞 ·
0 评论

一个简单的pytorch执行例子

#导入所需要的包import torchimport numpy as npimport torch.nn as nnimport matplotlib.pyplot as pltfrom torch.autograd import Variable #定义超参数input_size = 1output_size = 1num_epochs = 100learning_rate = 0.001 #数据集x_train = np.array([[3.3], [4.4], [5.5]
原创
发布博客 2021.07.02 ·
163 阅读 ·
0 点赞 ·
0 评论

DDPG代码实现

"""Deep Deterministic Policy Gradient (DDPG), Reinforcement Learning.DDPG is Actor Critic based algorithm.Pendulum example.View more on my tutorial page: https://morvanzhou.github.io/tutorials/Using:tensorflow 1.0gym 0.8.0"""######################
原创
发布博客 2021.04.05 ·
1165 阅读 ·
0 点赞 ·
1 评论

python zip 小语法

obs_dims = [1,2,3,4,5]ac_dims = [2,3,4,5,6]# 如果想同时遍历这两个listfor obs_dim, ac_dim in zip(obs_dims, ac_dims): print('obs_dim:', obs_dim, 'ac_dim', ac_dim)输出:obs_dim: 1 ac_dim 2obs_dim: 2 ac_dim 3obs_dim: 3 ac_dim 4obs_dim: 4 ac_dim 5obs_dim: 5
原创
发布博客 2021.03.21 ·
51 阅读 ·
0 点赞 ·
0 评论

不同长度的一维数组 append

import numpy as npa=np.asarray([1,2,3,4,5,6])b=np.asarray([11,22,33])c=np.asarray([44,55,66])x1 = np.concatenate((a,a),axis=0) # 默认情况下,axis=0可以不写x2 = np.concatenate((b,b),axis=0)x3 = np.concatenate((c,c),axis=0)print("x1:", x1)print("x2:", x...
原创
发布博客 2021.03.13 ·
164 阅读 ·
0 点赞 ·
0 评论

numpy np.where

import numpy as np# : 表示所有的行。# 标记reward_indicator = np.zeros([10, 5])process_delay = np.zeros([10, 5])process_delay[0,0] = 1process_delay[0,1] = 1process_delay[0,2] = 1process_delay[1,2] = 1process_delay[2,2] = 1for iot_index in ran...
原创
发布博客 2021.03.12 ·
44 阅读 ·
0 点赞 ·
0 评论

paper 实验效果图(论文中插图中字体大小还没有解决,查看一下期刊需要的格式)

import numpy as npimport matplotlib.pyplot as plt#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔from matplotlib.pyplot import MultipleLocator# No Offl.# x1 = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]y1 = [0.08, 0.25, 0.5, 0.7, 0.85, 0.9, 0.92, 0.9..
原创
发布博客 2021.03.07 ·
322 阅读 ·
0 点赞 ·
0 评论

Pytorch什么时候开始调用forward

import torchfrom torch import nnclass MLP(nn.Module): # 声明带有模型参数的层,这里声明了两个全连接层 def __init__(self, **kwargs): # 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数 # 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params super(MLP, self).__init__
原创
发布博客 2021.01.16 ·
550 阅读 ·
0 点赞 ·
0 评论

安装windows版本的多智能体MADDPG

总体的环境是:pip install gym==0.10.5conda install tensorflow-gpu==1.9.01.解压缩maddpg-master.zip和multiagent-particle-envs-master.zip放在pycharm,别忘了将文件夹转换成Reoursce root。# 第2,3步可以不用。2.在maddpg-master文件夹外层目录运行命令pip install -e maddpg-master3.在multiagent-particle-
原创
发布博客 2021.01.12 ·
444 阅读 ·
0 点赞 ·
1 评论

带宽和时延究竟有没有关系

一、严格意义上来说是不一样的,简单点说,网络为什么会出现延时,一定程度上就是带宽时延和数据量造成的;举个例子来说就很清楚了:带宽,bandwidth,是指每秒钟传输的最大字节数。带宽本来是指某个信号具有的频带宽度,单位是Hz。因为过去传输的主要是模拟信号,现在传输数字信号的时候我们还是用这个词来表示传输的速率。我以前总是这样以为,光纤比普通的双绞线传输的快。你看我们在网吧接着光纤上网的时候比在家上网的时候下东西的速度快的多。确实如此,但是我们理解的可能不对。不是光线更“快”,而是光纤的“量”更大。打一
转载
发布博客 2021.01.05 ·
2893 阅读 ·
1 点赞 ·
0 评论

python from collections import deque python中的队列

from collections import dequelstm_history = deque(maxlen=5)for ii in range(5): lstm_history.append(np.zeros([1]))print('lstm_history:', lstm_history)lstm_history.append('1')lstm_history.append('2')lstm_history.append('3')lstm_history.append('4
原创
发布博客 2020.12.30 ·
473 阅读 ·
0 点赞 ·
0 评论

Mobile Edge Computing 可以投的期刊和会议

(一)期刊CCF-A一区期刊IEEE Transactions on Computers(可以)IEEE Transactions on Mobile Computing(可以)IEEE Journal on Selected Areas in Communications(可以)IEEE Transactions on Parallel and Distributed Systems(可以)IEEE/ACM Transactions on NetworkingIEEE Networks
原创
发布博客 2020.12.29 ·
353 阅读 ·
0 点赞 ·
0 评论

tf.concat拼接 np.where

import numpy as npreward_indicator = np.zeros([110, 50])process_delay = np.zeros([110, 50])process_delay[0,0] = 4print('process_delay:', process_delay)temp1 = (1 - reward_indicator[:,0])print('temp1:', temp1)temp2 = process_delay[:,0] > 0print(.
原创
发布博客 2020.12.29 ·
36 阅读 ·
0 点赞 ·
0 评论
加载更多