python threading 线程池_python中threading多线程

python中有两个处理多线程的模块thread和threading。其中thread提供了多线程底层支持的模块,以低级原始的发那个是来处理和控制线程,使用起来较为复杂;而threading基于thread进行包装,将线程操作对象化。

最基础的的多线程

我们先看一个最最基础的多线程例子

importthreadingimporttimeclasstest(threading.Thread):def __init__(self,name,delay):

threading.Thread.__init__(self)

self.name=name

self.delay=delaydefrun(self):print "%s is running"%self.namefor x inrange(self.delay):

time.sleep(1)print "%s is saying hello %d"%(self.name,x)defmain():

t1= test('Thread 1',3)

t2= test('Thread 2',2)

t1.start()

t2.start()if __name__ == '__main__':

main()print "End of main"

输出结果如下:

Thread 1 is running

End of mainThread 2 is running

Thread 1 is saying hello 0

Thread 2 is saying hello 0

Thread 1 is saying hello 1

Thread 2 is saying hello 1

Thread 1 is saying hello 2

可以看出Thread1 和Thread2基本上轮流执行的,这就是多线程的好处,否则如果顺序执行2个程序会需要2倍的时间。

start是对thread的run()的封装,在调用start()的时候,会执行run()函数。

如果把代码中的一段改成下面这样呢?

defmain():

t1= test('Thread 1',3)

t2= test('Thread 2',2)

t1.start()print "wait for thread1 end"t1.join()

t2.start()

输出结果为:

wait for thread1 endThread 1 is running

Thread 1 is saying hello 0

Thread 1 is saying hello 1

Thread 1 is saying hello 2

End of mainThread 2 is running

Thread 2 is saying hello 0

Thread 2 is saying hello 1

从上面可以看出,调用了t1.join()后,t2会一直等到t1执行完毕才会开始执行。

使用Queue进行多线程编程

使用线程队列

如前所述,当多个线程需要共享数据或者资源的时候,可能会使得线程的使用变得复杂。线程模 块提供了许多同步原语,包括信号量、条件变量、事件和锁。当这些选项存在时,最佳实践是转而关注于使用队列。相比较而言,队列更容易处理,并且可以使得线 程编程更加安全,因为它们能够有效地传送单个线程对资源的所有访问,并支持更加清晰的、可读性更强的设计模式。

importthreadingimporttimeimportQueueimporturllib2importosclasstest(threading.Thread):def __init__(self,queue):

threading.Thread.__init__(self)

self.queue=queuedefrun(self):while 1:

url=self.queue.get()print self.name+"begin download"+url+"..."self.download(url)

self.queue.task_done()print self.name+"download completed"

defdownload(self,url):

urlHandle=urllib2.urlopen(url)

with open(os.path.basename(url)+".html","wb")as fp:while 1:

contents=urlHandle.read(1024)if notcontents:break

else:

fp.write(contents)defmain():

ulrs= ["http://wiki.python.org/moin/Webprograming","https://www.baidu.com","http://wiki.python.org/moin/Documendation"]

q= Queue.Queue(5)for each inulrs:

q.put(each)for i in range(5):

t=test(q)

t.setDaemon(True)

t.start()

q.join()if __name__ == '__main__':

main()

join()

保持阻塞状态,直到处理了队列中的所有项目为止。在将一个项目添加到该队列时,未完成的任务的总数就会增加。当使用者线程调用 task_done() 以表示检索了该项目、并完成了所有的工作时,那么未完成的任务的总数就会减少。当未完成的任务的总数减少到零时,join() 就会结束阻塞状态。

每个线程运行的时候就从队列里get一个url,这时候队列的长度就缩小1,然后完成的时候发送通知。直到队列为空的时候表示全部执行完毕。

调试的时候发现即使不要task_done()也可以得到一样的结果。但是主线程会一直阻塞着无法继续执行,所以task_done的任务是告诉主线程的当前任务完成了,并递减未完成的任务数,这样主线程才知道什么时候所有的任务都完成了,好继续执行。

使用线程池

可以自己实现一个线程池模块,也可以用已经存在的第三方线程池库,本文用的是后者,比较简单。

首先安装一个threadpool的库

pip install threadpool

然后用下面的代码完成和使用Queue一样的功能

importurllib2importosimportthreadpooldefdownload(url):

urlHandle=urllib2.urlopen(url)

with open(os.path.basename(url)+".html","wb")as fp:while 1:

contents=urlHandle.read(1024)if notcontents:break

else:

fp.write(contents)defmain():

ulrs= ["http://wiki.python.org/moin/Webprograming","https://www.baidu.com","http://wiki.python.org/moin/Documendation"]

thread_num=5pool=threadpool.ThreadPool(thread_num)

requests=threadpool.makeRequests(download,ulrs)print "put all request to thread pool"

for each inrequests:

pool.putRequest(each)

pool.poll()#处理任务队列中新的请求

pool.wait() #阻塞用于等待所有执行结果

print "destroy all threads"pool.dismissWorkers(thread_num,do_join=True)if __name__ == '__main__':

main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>