python中有两个处理多线程的模块thread和threading。其中thread提供了多线程底层支持的模块,以低级原始的发那个是来处理和控制线程,使用起来较为复杂;而threading基于thread进行包装,将线程操作对象化。
最基础的的多线程
我们先看一个最最基础的多线程例子
importthreadingimporttimeclasstest(threading.Thread):def __init__(self,name,delay):
threading.Thread.__init__(self)
self.name=name
self.delay=delaydefrun(self):print "%s is running"%self.namefor x inrange(self.delay):
time.sleep(1)print "%s is saying hello %d"%(self.name,x)defmain():
t1= test('Thread 1',3)
t2= test('Thread 2',2)
t1.start()
t2.start()if __name__ == '__main__':
main()print "End of main"
输出结果如下:
Thread 1 is running
End of mainThread 2 is running
Thread 1 is saying hello 0
Thread 2 is saying hello 0
Thread 1 is saying hello 1
Thread 2 is saying hello 1
Thread 1 is saying hello 2
可以看出Thread1 和Thread2基本上轮流执行的,这就是多线程的好处,否则如果顺序执行2个程序会需要2倍的时间。
start是对thread的run()的封装,在调用start()的时候,会执行run()函数。
如果把代码中的一段改成下面这样呢?
defmain():
t1= test('Thread 1',3)
t2= test('Thread 2',2)
t1.start()print "wait for thread1 end"t1.join()
t2.start()
输出结果为:
wait for thread1 endThread 1 is running
Thread 1 is saying hello 0
Thread 1 is saying hello 1
Thread 1 is saying hello 2
End of mainThread 2 is running
Thread 2 is saying hello 0
Thread 2 is saying hello 1
从上面可以看出,调用了t1.join()后,t2会一直等到t1执行完毕才会开始执行。
使用Queue进行多线程编程
使用线程队列
如前所述,当多个线程需要共享数据或者资源的时候,可能会使得线程的使用变得复杂。线程模 块提供了许多同步原语,包括信号量、条件变量、事件和锁。当这些选项存在时,最佳实践是转而关注于使用队列。相比较而言,队列更容易处理,并且可以使得线 程编程更加安全,因为它们能够有效地传送单个线程对资源的所有访问,并支持更加清晰的、可读性更强的设计模式。
importthreadingimporttimeimportQueueimporturllib2importosclasstest(threading.Thread):def __init__(self,queue):
threading.Thread.__init__(self)
self.queue=queuedefrun(self):while 1:
url=self.queue.get()print self.name+"begin download"+url+"..."self.download(url)
self.queue.task_done()print self.name+"download completed"
defdownload(self,url):
urlHandle=urllib2.urlopen(url)
with open(os.path.basename(url)+".html","wb")as fp:while 1:
contents=urlHandle.read(1024)if notcontents:break
else:
fp.write(contents)defmain():
ulrs= ["http://wiki.python.org/moin/Webprograming","https://www.baidu.com","http://wiki.python.org/moin/Documendation"]
q= Queue.Queue(5)for each inulrs:
q.put(each)for i in range(5):
t=test(q)
t.setDaemon(True)
t.start()
q.join()if __name__ == '__main__':
main()
join()
保持阻塞状态,直到处理了队列中的所有项目为止。在将一个项目添加到该队列时,未完成的任务的总数就会增加。当使用者线程调用 task_done() 以表示检索了该项目、并完成了所有的工作时,那么未完成的任务的总数就会减少。当未完成的任务的总数减少到零时,join() 就会结束阻塞状态。
每个线程运行的时候就从队列里get一个url,这时候队列的长度就缩小1,然后完成的时候发送通知。直到队列为空的时候表示全部执行完毕。
调试的时候发现即使不要task_done()也可以得到一样的结果。但是主线程会一直阻塞着无法继续执行,所以task_done的任务是告诉主线程的当前任务完成了,并递减未完成的任务数,这样主线程才知道什么时候所有的任务都完成了,好继续执行。
使用线程池
可以自己实现一个线程池模块,也可以用已经存在的第三方线程池库,本文用的是后者,比较简单。
首先安装一个threadpool的库
pip install threadpool
然后用下面的代码完成和使用Queue一样的功能
importurllib2importosimportthreadpooldefdownload(url):
urlHandle=urllib2.urlopen(url)
with open(os.path.basename(url)+".html","wb")as fp:while 1:
contents=urlHandle.read(1024)if notcontents:break
else:
fp.write(contents)defmain():
ulrs= ["http://wiki.python.org/moin/Webprograming","https://www.baidu.com","http://wiki.python.org/moin/Documendation"]
thread_num=5pool=threadpool.ThreadPool(thread_num)
requests=threadpool.makeRequests(download,ulrs)print "put all request to thread pool"
for each inrequests:
pool.putRequest(each)
pool.poll()#处理任务队列中新的请求
pool.wait() #阻塞用于等待所有执行结果
print "destroy all threads"pool.dismissWorkers(thread_num,do_join=True)if __name__ == '__main__':
main()