点击返回目录
一. 基本知识
1.1 微分方程组
1.1.1 形式
一个动力学系统中存在许多随时间变化的变量(可以用向量来表示这个系统,向量中的元素就代表着不同的变量,如
(1) 无依赖参数的微分方程组形式 (【1】P18的1.2.1和1.2.2式)(形式可参见【1】P51的例题1.2.12、P51的例1.2.13)
(2) 考虑依赖参数的微分方程组形式(【1】P19的1.2.4式)
1. 注意:
(1) 一定要切记每个是个关于
变化的函数,即
,只是写的时候简记为
。因此微分方程组可以想象成很多条随着时间奔跑并舞动着的线条(也可能在转圈圈,路径没说是直线趋势哟)。
(2) 函数可万万不能等价于我们要求解的结果,因为函数
还被许多变量
所决定着,而我们要求解的结果是只包含
的函数,即这些
。 微分方程组或许可以理解为一种“观测”结果,即各
之间表现出的关系,而我们要寻找的是其背后的决定性规律,即
。
1.1.2 Lipschitz条件
【1】P18的定义1.2.1。如果
1. 理解:关于这个条件的理解,利普希茨连续的几何意义是什么?怎么较好的理解它呢?
说的很清楚。将定义改写为会更清楚一些,这个公式告诉我们, 函数
中任意两点连线的斜率一致有界(即小于Lipschitz常数
),因此满足Lipschitz条件的连续函数比一般的连续函数更加光滑。此外,该条件还对函数
有两个额外的约束:(a) 函数
可导,则导数有界 (反过来,函数导数存在且有界,则可以推出该函数满足lipschitz条件);(b) 要求 函数
在无限的区间上不能够有超过线性的增长(如
这些函数是不可以的)。
1.1.3 解的定理
(1) 解的存在唯一性定理(【1】P18的定理1.2.1)(总而言之,关键还是看微分方程组等式右边的函数
(2) 解的延拓定理(【1】P18的定理1.2.2)(即一根根线条从初始条件出发,随着
(3) 解对初值的连续依赖性和可微定理(【1】P18的定理1.2.3)(就是说,如果函数
(4) 解对参数的连续性和可微性定理(【1】P19的定理1.2.4)(这个定理是针对考虑依赖参数的微分方程组的)。
1. 理解:都说Lipschitz条件在微分方程中特别重要,瞧瞧,就这里都已经很多定理是基于这个条件满足的基础上才能得到的啦。
1.2 微分、积分不等式
1.2.1 比较定理 (参见【1】P19的定理1.2.5)
1.2.2 Gronwall-Bellman不等式 (参见【1】P20的推论1.2.1,由P19的定理1.2.6得来)
1.2.3 第一比较定理 (参见【1】P20的定理1.2.7)
1.2.4 第二比较定理 (参见【1】P21的定理1.2.8)
1.3 微分方程的解析解法 (待更新)
1.4 微分方程的数值解法 (待更新)
二. 稳定性的基本定义
2.1 扰动运动的微分方程组
形式参见【1】P28的1.2.16式,推导参见【1】P27-28。说白了推导过程就是在进行问题的转换,即动力系统
Lyapunov稳定性的定义为:
2.2 稳定性的相关概念定义
关于稳定性的相关概念定义参见【1】P28-29的定义。它们的关系划分如下图所示。这些概念看似大同小异,其实差别蛮大的,要注意区分不同。“渐近”意味着

要理解它们,除了干瘪瘪的数学定义外,最好的方法就是从几何的角度进行理解。这里搬运几张老师课件上的图,整理如下图所示。

对于一些特殊的系统,包括:存在
点击返回目录