神经网络与深度学习实战:python+keras+tensorflow 资料_资料 | Keras 图像深度学习实战...

下载地址:https://www.yanxishe.com/resourceDetail/352?from=leiphonecolumn_res0728

d66d8bc3e38860f30aed0459c46f2d2c.png

内容简介 · · · · · ·

Keras是什么?它是一款非常流行的深度学习计算框架,利用keras只要十几行代码就能写出一个简单的神经网络训练模型。 Keras本身并不提供深度学习的计算引擎,实际它是利用TensorFlow或者Theano作为后端计算引擎的,但它封装了众多API接口,使用者只要了解其封装层的特性就能灵活应用于各种应用场景,是作为深度学习开发者的编程利器。

Keras有两大最显著的特点:一是编程接口简单,封装了众多TensorFlow和Theano细节;二是可在多种机器学习引擎之间自由切换,目前支持TensorFlow和Theano两种,其作者有意未来扩展到其他引擎。 本书不打算涉及Keras的各个方面,而只是聚焦在图像处理领域,并结合图像处理的其他函数综合运用到神经网络模型中,通过此书的学习和实战能达到熟练运用神经网络进行常规图像处理的程度。

作者简介 · · · · · ·

侯宜军,男,南京邮电大学计算机系研究生毕业,先后在电信设计院、摩托罗拉、医疗互联网初创公司等工作过,居住在南京。 具有多年分布式系统开发、数据分析从业经历,对Keras,Storm,Spark,Kafka等大数据技术框架较熟悉。目前研究方向集中在分布式系统、深度学习框架等领域。2015~2016年曾经与他人共同创办六度服务号中医在线平台,2017年初因个人原因退出创业团队,目前在苏宁云商任职高级技术经理。

补充说明 · · · · · ·

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。如需删除,请联系 kefu@yanxishe.com

AI 研习社已经和阿里大文娱、旷视、搜狗搜索、小米等知名公司达成联系,帮助大家更好地求职找工作,一键投递简历至 HR 后台,准备了一些内推渠道群。

欢迎大家添加研习社小学妹微信(aiyanxishe),小学妹拉你加入(备注求职)。

雷锋网雷锋网雷锋网

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
神经网络机器学习(原书第3版) Neural Networks and Learning Machines Third Edition (加)Simon Haykin 著 申富饶 徐烨 郑俊 晁静 译 神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的实验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色 基于随机梯度下降的在线学习算法;小规模和大规模学习问题。 核方法,包括支持向量机和表示定理。 信息论学习模型,包括独立分量分析(ICA)、相关独立分量分析和信息瓶颈等。 随机动态规划,包括逼近和神经动态规划。 逐次状态估计算法,包括卡尔曼和粒子滤波器。 利用逐次状态估计算法训练递归神经网络。 富有洞察力的面向计算机的实验。 作者简介 Simon Haykin 于1953年获得英国伯明翰大学博士学位,目前为加拿大McMaster大学电子计算机工程系教授、通信研究实验室主任。他是国际电子电气工程界的著名学者,曾获得IEEE McNaughton金奖。他是加拿大皇家学会院士、IEEE会士,在神经网络、通信、自适应滤波器等领域成果颇丰,著有多部教材。
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值