纵观历年来的中考数学卷,压轴题几乎都是与二次函数有关。今天郑老师为大家整理了二次函数与几何图形的综合题,希望对大家的复习有帮助。今天我们接着讲3题与面积有关的问题。
例1(2018•黄冈)已知直线l:y=kx+1与抛物线y=x²﹣4x.
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.
【分析】(1)联立两解析式,根据判别式即可求证;
(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.



【点评】本题考查二次函数的综合问题,涉及解一元二次方程组,根的判别式,三角形的面积公式等知识,综合程度较高.
例2 (2018•陕西)已知抛物线L:y=x²+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.
(1)求A、B、C三点的坐标,并求△ABC的面积;
(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.
【分析】(1)解方程x²+x﹣6=0得A点和B点坐标,计算自变量为0的函数值得到C点坐标,然后利用三角形面积公式计算△ABC的面积;
(2)利用抛物线平移得到A′B′=AB=5,再利用△A'B′C′和△ABC的面积相等得到C′(0,﹣6)或(0,6),则设抛物线L′的解析式为y=x²+bx﹣6或y=x²+bx+6,当m+n=﹣b,mn=﹣6,然后利用|n﹣m|=5得到b²﹣4×(﹣6)=25,于是解出b得到抛物线L′的解析式;当m+n=﹣b,mn=6,利用同样方法可得到对应抛物线L′的解析式.
【解答】解:(1)当y=0时,x²+x﹣6=0,解得x1=﹣3,x2=2,
∴A(﹣3,0),B(2,0),
当x=0时,y=x²+x﹣6=﹣6,
∴C(0,﹣6),
∴△ABC的面积=•AB•OC=(2+3)×6/2=15;
(2)∵抛物线L向左或向右平移,得到抛物线L′,
∴A′B′=AB=5,
∵△A'B′C′和△ABC的面积相等,
∴OC′=OC=6,即C′(0,﹣6)或(0,6),
设抛物线L′的解析式为y=x²+bx﹣6或y=x²+bx+6
设A'(m,0)、B′(n,0),
当m、n为方程x²+bx﹣6=0的两根,
∴m+n=﹣b,mn=﹣6,
∵|n﹣m|=5,
∴(n﹣m)²=25,
∴(m+n)²﹣4mn=25,
∴b²﹣4×(﹣6)=25,解得b=1或﹣1,
∴抛物线L′的解析式为y=x²﹣x﹣6.
当m、n为方程x2+bx+6=0的两根,
∴m+n=﹣b,mn=6,
∵|n﹣m|=5,
∴(n﹣m)²=25,
∴(m+n)²﹣4mn=25,
∴b²﹣4×6=25,解得b=7或﹣7,
∴抛物线L′的解析式为y=x²+7x+6或y=x²﹣7x+6.
综上所述,抛物线L′的解析式为y=x²﹣x﹣6或y=x²+7x+6或y=x²﹣7x+6.
【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax²+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象与几何变换.
例3 (2018•厦门一模)已知二次函数y=ax²+bx+t﹣1,t<0.
(1)当t=﹣2时,
①若二次函数图象经过点(1,﹣4),(﹣1,0),求a,b的值;
②若2a﹣b=1,对于任意不为零的实数a,是否存在一条直线y=kx+p(k≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由;
(2)若点A(﹣1,t),B(m,t﹣n)(m>0,n>0)是二次函数图象上的两点,且S△AOB=1/2n﹣2t,当﹣1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.
【分析】(1)①当t=﹣2时,二次函数为y=ax²+bx﹣3.把(1,﹣4),(﹣1,0)分别代入y=ax²+bx﹣3,得出关于a、b的二元一次方程组,解方程组即可;
②由2a﹣b=1得出b=2a﹣1.将y=kx+p代入y=ax²+bx﹣3,整理得出ax²+(2a﹣k﹣1)x﹣3﹣p=0,根据直线与二次函数图象交于不同的两点,得到△=(2a﹣k﹣1)²+4a(3+p)=4a²﹣4a(k﹣p﹣2)+(1+k)²>0,由非负数的性质得出当k﹣p﹣2=0时,总有△>0,取p=1,k=3,即可得出结论;


②∵2a﹣b=1,∴b=2a﹣1,
∴当直线y=kx+p与二次函数y=ax²+bx﹣3图象相交时,kx+p=ax²+(2a﹣1)x﹣3,
整理,得ax²+(2a﹣k﹣1)x﹣3﹣p=0,
∴△=(2a﹣k﹣1)²+4a(3+p),
若直线与二次函数图象交于不同的两点,则△>0,
∴(2a﹣k﹣1)²+4a(3+p)>0,
整理,得4a²﹣4a(k﹣p﹣2)+(1+k)²>0,
∵无论a取任意不为零的实数,总有4a²>0,(1+k)²≥0,
∴当k﹣p﹣2=0时,总有△>0,
∴可取p=1,k=3,
∴对于任意不为零的实数a,存在直线y=3x+1,始终与二次函数图象交于不同的两点;



【点评】本题是二次函数综合题,考查了利用待定系数法求抛物线的解析式,二次函数的性质,二次函数图象上点的坐标特征,抛物线与直线的交点,图形的面积等知识,综合性较强,有一定难度.利用分类讨论与方程思想是解题的关键.