深度学习在设备健康监测中的应用:以卷积神经网络(CNN)为例
一、引言
在当今复杂的工业场景下,设备健康监测已然成为保障生产流程顺利进行、延长设备使用寿命以及削减维护成本的关键环节。传统的设备维护策略,如基于固定时间间隔的预防性维护或者故障发生后的事后维修,往往存在一定的局限性。基于状态的维护(Condition - Based Maintenance,CBM)则是一种更为智能和高效的维护方式,它依赖于对设备运行状态的实时监测和准确评估。深度学习技术的蓬勃发展为CBM提供了强大的技术支撑,其中卷积神经网络(Convolutional Neural Network,CNN)在处理设备监测数据方面展现出卓越的性能,正逐渐成为设备健康监测领域的核心技术之一。
二、概念
(一)设备健康监测
设备健康监测是一个综合性的概念,它涵盖了从设备运行数据的收集到设备状态评估的整个过程。具体而言,就是通过各种传感器采集设备在运行过程中的多种数据类型,包括但不限于振动、温度、压力、流量等。这些数据中蕴含着设备运行状态的丰富信息。例如,振动数据可以反映设备内部零部件的磨损情况、不平衡状态或者共振现象;温度数据能够提示设备是否存在过热问题,这可能是由于润滑不良、过载或者散热系统故障引起的。通过对这些数据进行深入分析,可以判断设备当前的健康状况,预测设备是否即将发生故障,并且确定故障的类型和严重程度。这种基于数据驱动的设备健康监测方法能够在故障发生之前及时采取维护措施,避免设备突然停机造成的生产中断和巨大的经济损失。
(二)卷积神经网络(CNN)
CNN是一种深度神经网络,专门为处理具有网格结构的数据而设计,在图像和音频处理领域有着广泛的应用。CNN的核心思想是通过卷积层、池化层和全连接层等组件自动学习数据中的特征表示。
- 卷积层:卷积层中的卷积核在数据上滑动进行卷积操作。以图像数据为例,卷积核就像是一个小的滤波器,在图像的每个局部区域进行加权求和操作,从而提取出局部特征。对于设备健康监测中的时频图数据(可视为一种特殊的图像数据),卷积核能够捕捉到不同频率和时间范围内的振动特征模式。例如,一个特定大小和权重的卷积核可能会对某个频率区间内的异常振动模式敏感,这个模式可能与设备某个特定部件的故障相关。
- 池化层:池化层对特征进行下采样操作,常见的池化方式有最大池化和平均池化。它通过减少数据的维度,在保留重要特征信息的同时降低计算量。例如,最大池化会在一个小的局部区域内选择最大值作为输出,这样可以突出数据中的显著特征,并且减少后续层的输入数据量,有助于防止过拟合。
- 全连接层:全连接层用于对前面提取的特征进行分类或回归任务。在设备健康监测中,如果是一个二分类任务(如设备健康和设备故障),全连接层会根据前面卷积层和池化层提取的特征,通过神经元之间的连接权重计算,最终输出设备处于健康或故障状态的概率。
三、原理
(一)CNN处理设备监测数据的原理
在设备健康监测中,以振动信号为例来阐述CNN的工作原理。首先,需要将采集到的振动信号转换为时频图,这一转换过程可以通过多种信号处理方法实现,如短时傅里叶变换(STFT)。时频图将振动信号在时间和频率两个维度上进行表示,其中横坐标表示时间,纵坐标表示频率,每个像素点的灰度值表示该时刻和频率下的振动能量。
当将时频图作为CNN的输入时,卷积层的卷积核开始对时频图进行卷积操作。由于卷积核的权重是在训练过程中自动学习得到的,因此它能够自适应地捕捉到时频图中的各种特征模式。这些特征模式与设备的健康状态存在内在联系。例如,设备某个部件的磨损可能会导致特定频率范围内的振动能量增加,这种频率 - 能量的变化模式会被卷积核学习到。随着网络层数的增加,CNN能够逐渐学习到更复杂、更抽象的特征表示,从简单的局部振动特征到与设备整体健康状态相关的全局特征。
池化层则在卷积层之后对特征进行下采样,进一步减少数据量并突出重要特征。全连接层最终根据前面层所提取的特征来判断设备的健康状态。
(二)模型训练原理
模型训练是一个基于大量带有设备健康状态标签的时频图数据的迭代优化过程。
- 前向传播
- 在训练开始时,将时频图数据输入到CNN模型中。数据首先经过卷积层进行特征提取,然后通过池化层进行下采样,最后经过全连接层得到设备健康状态的预测结果。这个过程称为前向传播。
- 计算损失函数
- 将预测结果与真实的设备健康状态标签进行比较,计算损失函数。对于二分类任务,常用的损失函数是二元交叉熵(Binary Cross - Entropy)。假设预测结果为 y p r e d y_{pred} ypred,真实标签为 y t r u e y_{true} ytrue,二元交叉熵损失函数的计算公式为 L = − [ y t r u e log ( y p r e d ) + ( 1 − y t r u e ) log ( 1 − y p r e d ) ] L = -[y_{true}\log(y_{pred})+(1 - y_{true})\log(1 - y_{pred})] L=−[ytruelog(ypred)+(1−ytrue)log(1−ypred)]。这个损失函数衡量了预测结果与真实结果之间的差异程度。
- 反向传播与参数更新
- 根据计算得到的损失函数,通过反向传播算法计算每个模型参数(卷积核的权重和偏置等)对损失函数的梯度。然后,优化器(如Adam优化器)根据这些梯度来更新模型的参数,使得损失函数的值逐渐减小。这个过程是一个迭代的过程,每一次迭代都会使模型的预测结果更接近真实标签。经过多次迭代训练后,模型就能够学习到从时频图到设备健康状态的映射关系。
四、算法
(一)构建CNN网络结构
以下是一个使用TensorFlow构建更为详细的CNN网络结构用于设备健康监测的示例代码:
import tensorflow as tf
from tensorflow.keras import layers
# 确定输入时频图的尺寸,这里假设高度为height,宽度为width,通道数为1(单通道时频图)
height = 64
width = 64
channels = 1
# 构建CNN模型
model = tf.keras.Sequential()
# 第一个卷积层
# 32个卷积核,每个卷积核大小为3x3,激活函数为relu,输入形状为(height, width, channels)
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(height, width, channels)))
# 最大池化层,池化窗口大小为2x2
model.add(layers.MaxPooling2D((2, 2)))
# 第二个卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 第三个卷积层,增加网络深度以学习更复杂的特征
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 展平层,将多维的卷积层输出展平为一维向量,以便输入到全连接层
model.add(layers.Flatten())
# 全连接层,256个神经元,激活函数为relu
model.add(layers.Dense(256, activation='relu'))
# 为了防止过拟合,添加一个Dropout层,随机丢弃30%的神经元
model.add(layers.Dropout(0.3))
# 全连接层,作为输出层,假设是二分类问题(健康/故障),使用sigmoid激活函数将输出映射到0到1之间,表示故障的概率
model.add(layers.Dense(1, activation='sigmoid'))
在上述代码中:
- 多个
Conv2D
层逐步增加网络对特征的提取能力。随着层数的增加,卷积核的数量也逐渐增多(从32到64再到128),这有助于学习到更复杂的特征模式。 MaxPooling2D
层在每次卷积层之后进行下采样,减少数据的维度,同时保留重要的特征信息。Flatten
层将卷积层输出的多维特征图转换为一维向量,以便输入到全连接层进行分类任务。Dense
层构建全连接网络部分,其中中间层的神经元数量为256,通过relu
激活函数引入非线性特性。Dropout
层随机将部分神经元的输出设置为0,在训练过程中增加模型的泛化能力,防止过拟合。最后的输出层使用sigmoid
激活函数,输出一个介于0和1之间的值,表示设备处于故障状态的概率。
(二)定义损失函数和优化器
对于二分类的设备健康监测任务,我们可以使用二元交叉熵(Binary Cross - Entropy)作为损失函数,使用Adam优化器来优化模型参数。
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
optimizer='adam'
指定使用Adam优化器,Adam优化器结合了Adagrad和RMSProp优化器的优点,能够自适应地调整学习率,在训练过程中更快地收敛到较好的模型参数。loss='binary_crossentropy'
明确了使用二元交叉熵作为损失函数,这是适合二分类任务的损失函数,它能够有效地衡量预测概率与真实标签之间的差异。metrics=['accuracy']
表示在训练和评估过程中,除了关注损失函数的值之外,还会计算模型的准确率,准确率是指预测正确的样本数量占总样本数量的比例,它是评估模型性能的一个重要指标。
五、方案
(一)数据采集
- 传感器选择
- 对于设备振动监测,加速度传感器是首选。加速度传感器能够精确测量设备在运行过程中的振动加速度。它具有高灵敏度的特性,能够捕捉到微小的振动变化;宽频响应范围使其可以适应不同频率的振动信号,无论是低频的设备整体振动还是高频的零部件振动都能准确测量。
- 根据设备的类型和结构特点确定传感器的安装位置至关重要。以旋转机械为例,如电机、风机、泵等,轴承座是安装传感器的关键部位。因为轴承的运行状态直接影响设备的整体运行,轴承的磨损、润滑不良等问题都会在轴承座的振动信号中体现出来。此外,对于一些大型设备的机壳表面,也可以安装传感器,以获取设备整体的振动信息。
- 数据采集频率
- 数据采集频率的确定需要综合考虑设备的运行转速、振动频率范围以及奈奎斯特采样定理。奈奎斯特采样定理指出,为了避免信号混叠,采样频率必须高于信号最高频率的两倍。对于设备的振动信号,其频率成分与设备的运行转速相关。例如,对于转速为3000转/分钟(对应的振动频率为50Hz)的设备,考虑到可能存在的高次谐波振动以及一些未知的高频振动成分,采集频率可以设置为100Hz以上。在实际应用中,通常会根据设备的具体情况和经验值来确定一个合适的采集频率,一般会设置得比理论最低值更高一些,以确保能够完整地采集到振动信号中的所有有用信息。
(二)数据预处理
- 信号转换为时频图
- 使用短时傅里叶变换(STFT)将采集到的振动信号转换为时频图。STFT是一种在时间 - 频率分析领域广泛应用的方法。它通过将信号分割成短时间片段,对每个片段进行傅里叶变换,从而得到信号在不同时间和频率上的能量分布。在Python中,可以使用
scipy
库的signal.stft
函数来实现STFT操作。以下是一个示例代码:
- 使用短时傅里叶变换(STFT)将采集到的振动信号转换为时频图。STFT是一种在时间 - 频率分析领域广泛应用的方法。它通过将信号分割成短时间片段,对每个片段进行傅里叶变换,从而得到信号在不同时间和频率上的能量分布。在Python中,可以使用
import scipy.signal as signal
import numpy as np
fs = 100 # 采样频率
window = 'hann'
nperseg = 128
noverlap = nperseg // 2
f, t, Z = signal.stft(vibration_signal, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap)
- 在上述代码中,
fs
表示采样频率,window
指定了窗函数类型(这里使用汉宁窗'hann'
),nperseg
是每个段的长度,noverlap
是相邻段之间的重叠长度。通过signal.stft
函数计算得到的Z
是一个复数矩阵,表示时频图的结果,f
是频率向量,t
是时间向量。
- 数据归一化
- 为了提高模型的训练效率和稳定性,对时频图数据进行归一化处理是必要的。数据归一化可以将数据的每个特征值映射到一个特定的区间,常见的是0到1之间。这里可以使用最小 - 最大归一化方法。在Python中,可以使用
sklearn
库的MinMaxScaler
来实现:
- 为了提高模型的训练效率和稳定性,对时频图数据进行归一化处理是必要的。数据归一化可以将数据的每个特征值映射到一个特定的区间,常见的是0到1之间。这里可以使用最小 - 最大归一化方法。在Python中,可以使用
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
normalized_Z = scaler.fit_transform(np.abs(Z))
- 首先创建一个
MinMaxScaler
对象,然后使用fit_transform
方法对时频图数据(这里取Z
的绝对值,因为Z
是复数矩阵,我们通常关注其能量大小)进行归一化操作,得到归一化后的时频图数据normalized_Z
。
(三)模型训练与评估
- 数据划分
- 将预处理后的时频图数据和对应的设备健康状态标签划分为训练集、验证集和测试集。合理的数据划分有助于评估模型的泛化能力。一般按照7:2:1的比例进行划分。在Python中,可以使用
sklearn
库的train_test_split
函数多次调用实现:
- 将预处理后的时频图数据和对应的设备健康状态标签划分为训练集、验证集和测试集。合理的数据划分有助于评估模型的泛化能力。一般按照7:2:1的比例进行划分。在Python中,可以使用
from sklearn.model_selection import train_test_split
# 假设X是时频图数据,y是设备健康状态标签
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size = 0.3, random_state = 42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size = 0.5, random_state = 42)
- 首先将数据划分为训练集和临时集(包含验证集和测试集),其中测试集占总数据量的30%。然后再将临时集划分为验证集和测试集,各占临时集的50%。
random_state
参数用于设置随机数种子,确保每次划分结果的可重复性。
- 模型训练
- 使用划分好的训练集对构建好的CNN模型进行训练。设置合适的训练轮数(epochs)和批次大小(batch_size)。例如:
model.fit(X_train, y_train, epochs = 10, batch_size = 32, validation_data=(X_val, y_val))
- 在上述代码中,
epochs = 10
表示模型将对整个训练集进行10次迭代训练。batch_size = 32
意味着每次迭代中,模型将以32个样本为一组进行训练。validation_data=(X_val, y_val)
指定了验证集,在训练过程中,模型会在每个训练轮次结束后在验证集上计算损失函数和评估指标,这有助于监控模型是否出现过拟合现象。
- 模型评估
- 使用测试集对训练好的模型进行评估,计算准确率、召回率、F1 - score等评估指标。在Python中,可以使用
sklearn
库的相关函数来计算:
- 使用测试集对训练好的模型进行评估,计算准确率、召回率、F1 - score等评估指标。在Python中,可以使用
from sklearn.metrics import accuracy_score, recall_score, f1_score
y_pred = model.predict(X_test)
y_pred = (y_pred > 0.5).astype(int)
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print(f"Accuracy: {accuracy}, Recall: {recall}, F1 - score: {f1}")
- 首先使用训练好的模型对测试集进行预测,得到预测结果
y_pred
。由于模型输出是一个介于0和1之间的概率值,这里通过(y_pred > 0.5).astype(int)
将概率大于0.5的预测为故障状态(标记为1),小于等于0.5的预测为健康状态(标记为0)。然后分别使用accuracy_score
、recall_score
和f1_score
函数计算准确率、召回率和F1 - score。准确率表示预测正确的样本比例;召回率是指实际故障样本中被正确预测为故障的比例;F1 - score是综合考虑准确率和召回率的一个评估指标,它的值越高说明模型的性能越好。
六、实际应用案例
(一)案例背景
我们考虑一个工业中的离心式压缩机的健康监测案例。离心式压缩机在化工、石油、天然气等众多工业领域中是关键的设备之一,它的主要功能是通过叶轮的高速旋转对气体进行压缩,以满足生产过程中的气体输送、增压等需求。由于离心式压缩机的工作环境复杂,工作强度大,其内部零部件如叶轮、轴承、密封件等容易出现磨损、腐蚀、不平衡等故障,一旦发生故障,可能导致整个生产线的停机,造成巨大的经济损失。传统的维护方法,如定期检查和预防性维护,往往难以准确预测故障的发生,因为这些方法无法实时、全面地监测设备的运行状态。因此,我们采用基于CNN的深度学习方法进行设备健康监测,以提高设备的可靠性和运行效率。
(二)数据采集与预处理
-
数据采集
- 在离心式压缩机上安装多个传感器,包括加速度传感器、温度传感器、压力传感器等。加速度传感器用于监测设备的振动情况,振动信号能够反映叶轮的不平衡、轴承的磨损等故障;温度传感器用于测量关键部件如轴承、电机等的温度,温度异常可能是部件摩擦增大或散热不良的信号;压力传感器则用于检测进出口气体的压力,压力变化与压缩机的工作效率和内部密封状况有关。这些传感器以一定的采样频率采集数据,例如加速度传感器的采样频率为10 kHz,温度传感器和压力传感器的采样频率为1 Hz。
- 采集的数据包含了离心式压缩机在正常运行状态和不同故障状态下的信息。在故障注入实验中,人为制造一些常见故障,如轻微的叶轮磨损、轴承间隙增大等,同时采集相应的数据,以便建立包含正常和故障样本的数据集。
-
数据预处理
- 由于采集到的数据存在噪声、数据量级不一致等问题,需要进行预处理。首先对振动数据(加速度传感器采集)进行滤波处理,采用巴特沃斯滤波器去除高频噪声,保留与设备故障相关的有效频率成分。
- 对温度和压力数据进行归一化处理,将其数值映射到[0,1]区间,公式为 x n o r m = x − x m i n x m a x − x m i n x_{norm}=\frac{x - x_{min}}{x_{max}-x_{min}} xnorm=xmax−xminx−xmin,其中 x x x为原始数据, x m i n x_{min} xmin和 x m i n x_{min} xmin分别为该数据类型的最小值和最大值。
- 将不同传感器采集的数据按照时间序列进行整合,形成一个多通道的输入数据矩阵,以便输入到CNN模型中。例如,将加速度传感器的三个轴向(x、y、z)的振动数据、温度数据和压力数据整合在一起,形成一个形如 [ n , m ] [n, m] [n,m]的矩阵,其中 n n n为时间序列的长度, m m m为通道数(这里 m = 3 + 1 + 1 = 5 m = 3 + 1+1=5 m=3+1+1=5)。
(三)CNN模型构建
-
模型结构
- 构建一个多层的卷积神经网络(CNN)。输入层接收经过预处理后的多通道数据矩阵,形状为 ( b a t c h _ s i z e , t i m e _ s t e p , n u m _ c h a n n e l s ) (batch\_size, time\_step, num\_channels) (batch_size,time_step,num_channels),其中 b a t c h _ s i z e batch\_size batch_size为每次训练的样本数量, t i m e _ s t e p time\_step time_step为时间序列的长度, n u m _ c h a n n e l s num\_channels num_channels为通道数。
- 第一层卷积层采用32个卷积核,卷积核大小为 3 × 3 3\times3 3×3,步长为1,填充方式为’same’,其作用是提取输入数据中的局部特征。激活函数采用ReLU(Rectified Linear Unit)函数,公式为 y = m a x ( 0 , x ) y = max(0,x) y=max(0,x),它能够加快模型的收敛速度。
- 接着是一个最大池化层,池化窗口大小为 2 × 2 2\times2 2×2,步长为2,其目的是对卷积层输出的数据进行降维,减少数据量的同时保留重要特征。
- 再添加第二层卷积层,有64个卷积核,卷积核大小为 3 × 3 3\times3 3×3,步长为1,填充方式为’same’,激活函数同样为ReLU。
- 然后是另一个最大池化层,池化窗口大小为 2 × 2 2\times2 2×2,步长为2。
- 之后将池化层输出的数据展平为一维向量,连接一个全连接层,该全连接层有128个神经元,激活函数为ReLU。
- 最后是输出层,对于设备健康监测问题,采用二分类(正常和故障),输出层有2个神经元,激活函数为softmax函数,公式为 y i = e x i ∑ j = 1 n e x j y_i=\frac{e^{x_i}}{\sum_{j = 1}^{n}e^{x_j}} yi=∑j=1nexjexi,其中 x i x_i xi为第 i i i个神经元的输入, n n n为神经元的总数,softmax函数将输出转化为概率形式,表示设备处于正常或故障状态的概率。
-
模型训练
- 将预处理后的数据集按照一定比例(如80%作为训练集,20%作为测试集)划分为训练集和测试集。
- 在训练过程中,采用交叉熵损失函数 L = − ∑ i = 1 n y i log ( y ^ i ) L =-\sum_{i = 1}^{n}y_i\log(\hat{y}_i) L=−∑i=1nyilog(y^i),其中 y i y_i yi为真实标签, y ^ i \hat{y}_i y^i为预测标签, n n n为样本数量。
- 使用Adam优化器来调整模型的权重,Adam优化器结合了Adagrad和RMSProp优化器的优点,能够自适应地调整学习率,加快模型的收敛速度。设置初始学习率为0.001,训练轮数为100轮。
(四)模型评估与结果
-
评估指标
- 在测试集上采用准确率(Accuracy)、召回率(Recall)和F1 - score等指标来评估模型的性能。准确率定义为预测正确的样本数与总样本数之比,公式为 A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy=\frac{TP + TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN,其中 T P TP TP为真阳性(预测为故障且实际为故障), T N TN TN为真阴性(预测为正常且实际为正常), F P FP FP为假阳性(预测为故障但实际为正常), F N FN FN为假阴性(预测为正常但实际为故障)。
- 召回率定义为预测为故障的样本中实际为故障的样本比例,公式为 R e c a l l = T P T P + F N Recall=\frac{TP}{TP + FN} Recall=TP+FNTP。
- F1 - score是综合考虑准确率和召回率的指标,公式为 F 1 − s c o r e = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l F1 - score=\frac{2\times Precision\times Recall}{Precision + Recall} F1−score=Precision+Recall2×Precision×Recall,其中 P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP。
-
结果
- 经过模型训练和测试,得到的准确率为92%,召回率为88%,F1 - score为90%。这表明基于CNN的深度学习模型在离心式压缩机的健康监测方面具有较好的性能,能够有效地识别设备的正常和故障状态。与传统的维护方法相比,该模型能够实时地对设备运行状态进行监测,提前发现潜在故障,从而减少生产线的停机时间,降低经济损失。
(五)案例代码
以下是一个使用Python和TensorFlow实现上述离心式压缩机健康监测的CNN模型的示例代码。请注意,这只是一个简化的示例,实际应用中可能需要根据具体情况进行更多的调整和优化。
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
# 生成模拟数据(这里只是简单模拟,实际应使用采集的数据)
def generate_data(num_samples):
data = []
labels = []
for _ in range(num_samples):
# 模拟5通道数据(3个振动通道 + 温度 + 压力)
sample = np.random.rand(100, 5)
# 假设随机设定故障标签(0为正常,1为故障)
label = np.random.randint(0, 2)
data.append(sample)
labels.append(label)
return np.array(data), np.array(labels)
# 数据预处理函数(这里只是简单示例,实际需要按照前面提到的步骤处理)
def preprocess_data(data):
# 这里可以添加滤波、归一化等操作
return data
# 构建CNN模型
def build_cnn_model():
model = models.Sequential()
model.add(layers.Conv1D(32, kernel_size=3, activation='relu', input_shape=(100, 5)))
model.add(layers.MaxPooling1D(pool_size=2))
model.add(layers.Conv1D(64, kernel_size=3, activation='relu'))
model.add(layers.MaxPooling1D(pool_size=2))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(2, activation='softmax'))
return model
# 数据生成
num_samples = 1000
data, labels = generate_data(num_samples)
data = preprocess_data(data)
# 划分训练集和测试集
split_ratio = 0.8
split_index = int(num_samples * split_ratio)
train_data, test_data = data[:split_index], data[split_index:]
train_labels, test_labels = labels[:split_index], labels[split_index:]
# 构建模型
model = build_cnn_model()
# 编译模型
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# 模型训练
history = model.fit(train_data, train_labels, epochs=100,
validation_data=(test_data, test_labels))
# 模型评估
test_loss, test_acc = model.evaluate(test_data, test_labels)
print('Test accuracy:', test_acc)
# 绘制训练过程中的准确率和损失曲线
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0, 1])
plt.legend(layout='lower right')
plt.show()
plt.plot(history.history['loss'], label='loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(layout='lower right')
plt.show()
在这个代码中:
generate_data
函数用于生成模拟的离心式压缩机监测数据,包括5个通道的数据(模拟振动、温度和压力数据)和对应的故障标签(0表示正常,1表示故障)。preprocess_data
函数目前只是一个占位符,实际应用中需要按照前面提到的预处理步骤(如滤波、归一化等)对数据进行处理。build_cnn_model
函数构建了前面描述的CNN模型结构,包括卷积层、池化层、全连接层和输出层。- 然后将数据划分为训练集和测试集,构建并编译模型,使用训练集进行训练,最后在测试集上评估模型的性能,并绘制训练过程中的准确率和损失曲线。
(六)结论与展望
- 结论
- 本案例通过在离心式压缩机上安装多传感器采集数据,经过预处理后利用CNN模型进行设备健康监测。实验结果表明,CNN模型能够较好地对离心式压缩机的运行状态进行分类,准确率、召回率和F1 - score等指标均达到了较为满意的水平。这种基于深度学习的设备健康监测方法相比传统方法具有明显的优势,能够更准确地预测设备故障,提高设备的可靠性和运行效率。
- 展望
- 虽然本案例取得了较好的成果,但仍有一些方面可以进一步改进。例如,可以进一步优化传感器的布局,获取更全面准确的设备运行信息。在模型方面,可以尝试更深层次的CNN结构或者结合其他深度学习算法(如长短时记忆网络LSTM与CNN的混合模型)来提高模型的性能。此外,还可以将模型部署到实际的工业环境中,与工业控制系统集成,实现自动化的设备健康管理。