摘要:深度学习在极端天气预测进步显著且前景广阔。借助DNN等技术,它能分析气象数据复杂模式与非线性关系,自动提取特征处理多维数据提升预测准确性和时效性。如MetNet模型预测降水概率,DeepPhysiNet框架融入物理定律提高预报水平。它还能检测预测时空数据异常。但也面临挑战,像处理结果不确定性和建立模型信任。未来,深度学习与传统方法融合,运用Transformer架构、GNN、多源数据融合、转移学习和不确定性分析技术等,将提升极端天气预测能力,保障社会安全与可持续发展。
深度学习:极端天气预测的“智慧天眼”
一、深度学习在气象领域的崛起
(一)传统天气预报的局限
在气象学领域,天气预报一直是人们关注的重点,传统的数值天气预报方法曾经是我们获取天气信息的主要途径,但随着对预报精度和效率要求的不断提高,其局限性也逐渐凸显出来。
首先,传统数值天气预报方法往往耗时较长。大气系统本身极为复杂,其包含着非线性、多尺度、多圈层以及多种强迫和反馈等特征,想要对其进行准