摘要:随着全球气候变化的加剧,厄尔尼诺(El Niño)和拉尼娜(La Niña)现象对全球气候模式的影响日益显著。准确预测这些现象对于农业、水资源管理、灾害预防等领域至关重要。本文将详细介绍一种结合了卷积长短期记忆网络(CNN-LSTM)编码器-解码器模型与经验模态分解(EMD)技术的混合方法,该方法在预测海洋尼诺指数(ONI)方面展现出了卓越的性能。
1. 引言
1.1 厄尔尼诺和拉尼娜现象简介
厄尔尼诺和拉尼娜现象是地球气候系统中的两个极端气候事件,它们对全球气候模式和极端天气事件有着深远的影响。厄尔尼诺现象通常表现为赤道太平洋中部和东部海域的海水温度异常升高,而拉尼娜现象则相反,表现为这些区域的海水温度异常降低。这两种现象都会导致全球范围内的气候异常,如洪水、干旱、飓风等,对农业、水资源管理和生态系统保护等领域产生重大影响。
1.2 深度学习在气候预测中的应用
深度学习作为机器学习的一个分支,近年来在气候预测领域展现出了巨大的潜力。特别是卷积长短期记忆网络(CNN-LSTM)编码器-解码器模型,因其能