摘要:本文系统阐述了深度强化学习中策略梯度方法的核心原理及其代表算法PPO(近端策略优化)的技术细节。作为直接优化策略函数的强化学习方法,策略梯度特别适合处理连续动作空间问题,在自动驾驶决策、机械臂控制等领域具有广泛应用。文中详细解析了策略梯度定理、重要性采样、信任区域优化等关键技术,通过PyTorch实现完整的PPO算法,并在Mujoco物理仿真环境和真实机械臂平台上验证有效性。实验结果表明,基于PPO训练的智能体在HalfCheetah环境中达到1300+的累积奖励,机械臂轨迹跟踪误差降低至0.02m以下。本文提供完整代码、训练可视化及工程优化方案,为相关领域研究人员和工程师提供可复用的技术框架。
文章目录
【深度学习常用算法】十、深度强化学习之策略梯度方法:从理论到PPO算法的全面解析
关键词
深度强化学习;策略梯度;PPO;近端策略优化;连续动作空间;自动驾驶;机械臂控制