摘要:本文系统阐述图神经网络(GNN)的核心原理、关键变体及其在多领域的应用实践。作为处理图结构数据的专用深度学习模型,GNN通过聚合邻居节点信息实现图数据特征学习,在社交网络分析、分子结构预测、推荐系统等领域展现独特优势。文中深入解析图卷积网络(GCN)和图注意力网络(GAT)的算法机制,通过PyTorch Geometric实现完整模型训练与推理,在Cora引文网络和ZINC分子数据集上进行实验验证。实验结果表明,GCN在节点分类任务中达到83.1%准确率,GAT在分子属性预测任务中RMSE降低至0.32。本文提供完整代码、可视化分析及优化策略,为图数据处理提供可复用的技术方案。
文章目录
【深度学习常用算法】十二、图神经网络(GNN):从基础理论到GCN与GAT的全栈解析与实战
关键词
图神经网络;GNN;图卷积网络;GCN;图注意力网络;GAT;