摘要:本文聚焦工业数字孪生领域的智能升级,提出基于DeepSeek大模型与西门子MindSphere平台的预测性维护解决方案。该方案通过融合设备传感器数据与工业知识图谱,构建从故障预警到自主修复的全流程自动化体系。核心突破在于将设备非计划停机时间减少80%,维修成本下降60%,平均修复时间(MTTR)从4.2小时压缩至1.1小时。通过多源数据融合分析、动态维修策略优化、AR可视化指导三大技术创新,实现轴承磨损等典型故障的92%早期识别率。文中以汽车厂涂装线机器人等案例验证,详解技术架构与算法实现,提供完整代码示例,为构建“自愈型工厂”提供可落地的实施路径,推动工业维护从被动响应向主动预测转型。
AI领域优质专栏欢迎订阅!