简介: 基因行业容器存储解决方案
1、基因行业背景
1.1. 中国基因市场分析
基因组学是未来精准医疗的“基石”。70%的基因企业选择使用云计算来处理基因组相关业务。过去一年内,阿里云为基因医学影像数据提供了安全可靠的存储,500%数据增长,增长迅猛。强大无限制的计算能力,阿里云支撑了百万以上的基因样本数据分析工作。
2. 基因行业的存储痛点和需求分析
2.1. 基因组学数据管理相对复杂
一家大型基因测序功能公司每日会产生 10TB 到 100TB 的下机数据,大数据生信分析平台需要达到 PB 级别的数据处理能力,这背后需要生物科技和计算机科技的双向支撑。测序应用从科研逐步走向临床应用,计算模式从离线向在线演进,交付效率越来越重要。多变的数据处理流程,以及大量的生物信息软件版本的管理,大量排队的数据处理任务,由于生物信息软件的运行特性CPU平均利用率仍然不足,难以无人职守的处理失败任务,成本居高不下等等问题存在于以下的现有的系统中,催生了生物信息行业对云计算和云原生技术的拥抱姿态,在成本,弹性,效率,规模也提出了更高要求。
从基因业务角度理解,基因行业的数据处理的主要需求是提升效率,降低成本。基因场景的数据传输要求高速、稳定。如下图所示,是基因业务的数据处理流程图。
典型的基因行业数据传输与交付场景如下:
• 测序服务商海量数据上云,数据上云有多重途径,通过OSS工具、存储网关、闪电立方等。一般1PB数据离线迁移,最快1周上云。
• 科技服务公司:企业客户数据交付。数据交付,通知杭州到上海,同账号的跨地域复制的数据交付,在线迁移服务,完成跨地域、跨账号交付。杭州传到全球访问,全球访问加速。杭州传到企业用户,基于阿里云ram子账号,企业客户自己账号系统的交付体系。