logistic回归分析_统计问答(1):正态性问题、亚组分析、logistic回归样本量等...

本文讨论了Logistic回归分析中的几个关键问题,包括亚组分析的分组原则,指出亚组分析实质是对每个亚组进行独立的卡方检验;强调了在观察性研究中,统计分析结果的可靠性需要基于严谨的设计和足够样本量;提醒读者不正态分布的数据不应使用均数加减标准差来描述,而应选择合适的统计量如中位数;并澄清了Logistic回归样本量计算中阳性个数与自变量个数的关系,指出样本量计算应基于结局事件中较少发生的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1个问题

Question 1: 郑老师您好,我想请教您个问题[呲牙],我现在做的试验是干预性非随机对照试验,比较两种治疗方法的疗效优劣,最后统计结果是阴性,想针对不同年龄层进行一下亚组分析。但是不明白事后亚组分析的分组原则是有专门的统计方法进行分组呢,还是基于已有文献的论证,自己对可能有关的变量进行分组呢?(统计小白,问的问题有点弱智[捂脸][捂脸]老师不要嫌弃)

Answer1:亚组分析其实不是特别的方法,比如我们可以总体评价干预组和对照组的疗效,如果是有效率的话,可以采用卡方检验;如果是亚组分析呢?分年龄进行亚组分析,意味着在每个年龄层都开展一次卡方检验,计算P值,便是亚组分析。所以亚组分析统计学方法和总分析方法无异。临床试验亚组分析没有特别的,可以事先设定,也可以事后分析,但事先设定的意义更大一些。

--临床试验设计分析--

第2个问题

Question2:为什么以下研究结论不妥当,不够严谨

这是一项回顾性队列研究,所有180病例为医院手足口病的住院患者。按患者是否应用中药治疗分为常规治疗组(对照组)与中药治疗组(治疗组)。比较中、西医治疗的效果。结果方面,两组患者的有效率情况采用卡方检验,差异有统计学意义(P<0.01),该论文认为中医药治疗效果较好。显然这样的结论不妥当&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值