dearRongerr
码龄2年
关注
提问 私信
  • 博客:87,993
    87,993
    总访问量
  • 220
    原创
  • 11,062
    排名
  • 792
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2023-04-10
博客简介:

2301_77549977的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    637
    当月
    77
个人成就
  • 获得1,095次点赞
  • 内容获得12次评论
  • 获得922次收藏
  • 代码片获得349次分享
创作历程
  • 206篇
    2024年
  • 14篇
    2023年
成就勋章
TA的专栏
  • 📒
    15篇
  • 手撕代码
    7篇
  • 同济子豪兄
    1篇
  • pytorch
    2篇
  • 力扣
    1篇
  • 读文献
    18篇
  • 扒网络模块
    3篇
  • 扒代码
    52篇
  • python
    13篇
  • 常见代码片段
    1篇
  • 报错📒
    5篇
  • 白菜学习问问问系列
    15篇
  • 机器学习
    2篇
  • 时间序列
    12篇
  • 统计学知识
    12篇
  • Transformer学习笔记
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

受保护的变量 & 私有变量:self._running_mean

在 Python 中,变量名前加一个下划线(例如 _running_mean)通常是一种约定,表示该变量是“受保护的”或“内部使用的”。这是一种编码习惯,用于提示其他开发者该变量不应该被直接访问或修改,而是应该通过类的方法进行操作。
原创
发布博客 2024.11.10 ·
287 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

distances = np.linalg.norm(data[:, None] - centers, axis=2)

问题:如果data的形状是 n×d(样本数 × 特征维度),centers的形状是 k×d(聚类中心数×特征维度)data[:,None]扩充1维 形状变成 n×1×d那为什么做减法 形状变成了 n×k×d?,虽然 centers没有显式地扩展维度,但通过 data[:, None]的操作,数据的维度已经被调整,使得广播机制可以正常工作。广播NumPy 的广播机制允许不同形状的数组在一起进行算术运算。广播的规则如下:(维度数不同)(固定维度 比长度 长度有1)
原创
发布博客 2024.11.10 ·
334 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

data[:, None]:n_samples * 1 * feature_dim 为什么形状是这样的?

在 Python 中,使用 None作为索引可以在数组中插入一个新的维度。具体来说,会在原始数组的第二个维度位置插入一个新的维度。假设我们有一个二维数组,其形状为。通过操作,我们在第二个维度位置插入一个新的维度,使得数组的形状变为。假设我们有一个二维数组,其形状为(5, 3),即。现在,我们使用在第二个维度位置插入一个新的维度。
原创
发布博客 2024.11.10 ·
256 阅读 ·
6 点赞 ·
0 评论 ·
5 收藏

面试手撕代码 layerNorm 逐行注释

【代码】面试手撕代码 layerNorm 逐行注释。
原创
发布博客 2024.11.10 ·
59 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

mean_x2 = (x**2).mean(dim=dims, keepdims=True)

这行代码的作用是计算输入张量 x在指定维度上的平方均值,并保持原始维度的形状。
原创
发布博客 2024.11.10 ·
224 阅读 ·
8 点赞 ·
0 评论 ·
4 收藏

mean = x.mean(dim=dims, keepdims=True) # [b,1,1]

这行代码的作用是计算输入张量 x在指定维度上的均值,并保持原始维度的形状。
原创
发布博客 2024.11.10 ·
146 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

python的负数索引理解

在 Python 中,负数索引用于从序列(如列表、元组或张量)的末尾开始计数。-1-2例子:假设我们有一个列表listlst[-1]50lst[-2]40lst[-3]30在 Layer Normalization 的实现中,负数索引用于计算需要进行归一化的维度索引。假设 self.normalized_shape是[3, 4],则 len(self.normalized_shape)是 2。因此,range(len(self.normalized_shape))生成[0, 1]。
原创
发布博客 2024.11.10 ·
315 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

笔记1 导入 | 斯坦福CS224W图机器学习、图神经网络、知识图谱【同济子豪兄】

图是多模态特征的,比如网易云音乐,一首歌既有音频特征又有评论、专辑、歌手、MV视频,所以每一个节点有多模态特征。图片 从上到下 从左到右进行卷积;文本 从前到后处理;图是没有固定的锚点的;处理表格数据、序列数据、节点和连接数据,数据之间带有关联;在以前的机器学习中,每一个数据样本是彼此无关的,iid假设。图是动态变化的,比如微信好友,淘宝推荐。图:节点 & 连接;很多数据都能用图表示:计算机网络。用节点和连接变成一张图。发散:复杂网络、知识图谱。图 是深度学习的新蓝海。
原创
发布博客 2024.11.10 ·
198 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

pytorch torch.randint

这段代码使用 PyTorch 创建一个包含随机整数的张量。是批量大小(batch size),例如 bs = 4。,那么这段代码会生成一个形状为。的张量,其中包含 4 个在。例如,如果 bs = 4。
原创
发布博客 2024.11.09 ·
215 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

pytorch torch.tile用法

是 PyTorch 中用于重复张量的函数。它可以沿指定的维度重复张量的元素。以下是一个示例代码,展示 tile。的张量,其中每个批次都包含原始的 weight_hh。这样,w_hh_batch。指定各维度分别重复多少次。
原创
发布博客 2024.11.09 ·
302 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

手撕代码 绝对位置编码

【代码】手撕代码 绝对位置编码。
原创
发布博客 2024.11.08 ·
77 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

代码 RNN原理及手写复现

笔记连接: https://pan.baidu.com/s/1_Sm7ptEiJtTTq3vQWgOTNg?pwd=2rei 提取码: 2rei。
原创
发布博客 2024.11.08 ·
319 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

手撕代码要做(更新)

Transformer篇。
原创
发布博客 2024.11.08 ·
86 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

面试题 手撕k-means

【代码】面试题 手撕k-means。
原创
发布博客 2024.11.08 ·
115 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

手撕 多头注意力机制

【代码】手撕 多头注意力机制。
原创
发布博客 2024.11.08 ·
80 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

代码 Vision Transformer原理实现

【代码】代码 Vision Transformer原理实现。
原创
发布博客 2024.11.08 ·
172 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

关于几种卷积

这样也有一个问题,就是输入特征图的通道之间没有交互,所以这种情况下,在后面的卷积过程中,会有通道之间的随机混合或者用1×1的卷积;5×5的input feature,3×3的kernel,输出3×3的特征图,对着取到input region有9个,我们把9个region拉直成行向量,9个行向量,与 kernel拉成的列向量 进行矩阵相乘,得到输出的列向量,把输出的列向量,reshape成输出特征图的尺寸,完成卷积。1×1的卷积可以理解为对通道进行加权,对于一个通道来说,每个像素点加权是一样的;
原创
发布博客 2024.11.07 ·
1030 阅读 ·
7 点赞 ·
0 评论 ·
19 收藏

手撕代码1 自注意力机制

init需要的参数是 hidden dim,通过三个线性层 得到q,k,v;init定义成员变量,全部是成员变量。输入x是一个是序列,输出每个词与每个词之间的相关性。首先自注意力机制的目的是 给定Q=K=V。首先 常见的深度学习库 无脑导入。
原创
发布博客 2024.11.06 ·
95 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

力扣1 两数之和

输入一个数组,给定一个和,找到数组中的两个数,使得两个数的和等于给定的target,返回对应的索引;解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1]。定义一个字典 ,遍历数组nums,可以得到数字和对应的索引,判断如果。输入:nums = [2,7,11,15], target = 9。
原创
发布博客 2024.11.06 ·
233 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

报错 :RuntimeError: Found no NVIDIA driver on your system.

Traceback (most recent call last): File "/root/DAVE-master/main.py", line 715, in <module> evaluate(args) File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs
原创
发布博客 2024.10.29 ·
215 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多