受保护的变量 & 私有变量:self._running_mean 在 Python 中,变量名前加一个下划线(例如 _running_mean)通常是一种约定,表示该变量是“受保护的”或“内部使用的”。这是一种编码习惯,用于提示其他开发者该变量不应该被直接访问或修改,而是应该通过类的方法进行操作。
distances = np.linalg.norm(data[:, None] - centers, axis=2) 问题:如果data的形状是 n×d(样本数 × 特征维度),centers的形状是 k×d(聚类中心数×特征维度)data[:,None]扩充1维 形状变成 n×1×d那为什么做减法 形状变成了 n×k×d?,虽然 centers没有显式地扩展维度,但通过 data[:, None]的操作,数据的维度已经被调整,使得广播机制可以正常工作。广播NumPy 的广播机制允许不同形状的数组在一起进行算术运算。广播的规则如下:(维度数不同)(固定维度 比长度 长度有1)
data[:, None]:n_samples * 1 * feature_dim 为什么形状是这样的? 在 Python 中,使用 None作为索引可以在数组中插入一个新的维度。具体来说,会在原始数组的第二个维度位置插入一个新的维度。假设我们有一个二维数组,其形状为。通过操作,我们在第二个维度位置插入一个新的维度,使得数组的形状变为。假设我们有一个二维数组,其形状为(5, 3),即。现在,我们使用在第二个维度位置插入一个新的维度。
python的负数索引理解 在 Python 中,负数索引用于从序列(如列表、元组或张量)的末尾开始计数。-1-2例子:假设我们有一个列表listlst[-1]50lst[-2]40lst[-3]30在 Layer Normalization 的实现中,负数索引用于计算需要进行归一化的维度索引。假设 self.normalized_shape是[3, 4],则 len(self.normalized_shape)是 2。因此,range(len(self.normalized_shape))生成[0, 1]。
笔记1 导入 | 斯坦福CS224W图机器学习、图神经网络、知识图谱【同济子豪兄】 图是多模态特征的,比如网易云音乐,一首歌既有音频特征又有评论、专辑、歌手、MV视频,所以每一个节点有多模态特征。图片 从上到下 从左到右进行卷积;文本 从前到后处理;图是没有固定的锚点的;处理表格数据、序列数据、节点和连接数据,数据之间带有关联;在以前的机器学习中,每一个数据样本是彼此无关的,iid假设。图是动态变化的,比如微信好友,淘宝推荐。图:节点 & 连接;很多数据都能用图表示:计算机网络。用节点和连接变成一张图。发散:复杂网络、知识图谱。图 是深度学习的新蓝海。
pytorch torch.randint 这段代码使用 PyTorch 创建一个包含随机整数的张量。是批量大小(batch size),例如 bs = 4。,那么这段代码会生成一个形状为。的张量,其中包含 4 个在。例如,如果 bs = 4。
pytorch torch.tile用法 是 PyTorch 中用于重复张量的函数。它可以沿指定的维度重复张量的元素。以下是一个示例代码,展示 tile。的张量,其中每个批次都包含原始的 weight_hh。这样,w_hh_batch。指定各维度分别重复多少次。
关于几种卷积 这样也有一个问题,就是输入特征图的通道之间没有交互,所以这种情况下,在后面的卷积过程中,会有通道之间的随机混合或者用1×1的卷积;5×5的input feature,3×3的kernel,输出3×3的特征图,对着取到input region有9个,我们把9个region拉直成行向量,9个行向量,与 kernel拉成的列向量 进行矩阵相乘,得到输出的列向量,把输出的列向量,reshape成输出特征图的尺寸,完成卷积。1×1的卷积可以理解为对通道进行加权,对于一个通道来说,每个像素点加权是一样的;
手撕代码1 自注意力机制 init需要的参数是 hidden dim,通过三个线性层 得到q,k,v;init定义成员变量,全部是成员变量。输入x是一个是序列,输出每个词与每个词之间的相关性。首先自注意力机制的目的是 给定Q=K=V。首先 常见的深度学习库 无脑导入。
力扣1 两数之和 输入一个数组,给定一个和,找到数组中的两个数,使得两个数的和等于给定的target,返回对应的索引;解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1]。定义一个字典 ,遍历数组nums,可以得到数字和对应的索引,判断如果。输入:nums = [2,7,11,15], target = 9。
报错 :RuntimeError: Found no NVIDIA driver on your system. Traceback (most recent call last): File "/root/DAVE-master/main.py", line 715, in <module> evaluate(args) File "/root/miniconda3/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context return func(*args, **kwargs